
Filter Design HDL Coder™

User's Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Filter Design HDL Coder™ User's Guide
© COPYRIGHT 2004–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004 Online only New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.2 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)
March 2006 Online only Revised for Version 1.4 (Release 2006a)
September 2006 Online only Revised for Version 1.5 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 2.5 (Release 2009b)
March 2010 Online only Revised for Version 2.6 (Release 2010a)
September 2010 Online only Revised for Version 2.7 (Release 2010b)
April 2011 Online only Revised for Version 2.8 (Release 2011a)
September 2011 Online only Revised for Version 2.9 (Release 2011b)
March 2012 Online only Revised for Version 2.9.1 (Release 2012a)
September 2012 Online only Revised for Version 2.9.2 (Release 2012b)
March 2013 Online only Revised for Version 2.9.3 (Release 2013a)
September 2013 Online only Revised for Version 2.9.4 (Release 2013b)
March 2014 Online only Revised for Version 2.9.5 (Release 2014a)
October 2014 Online only Revised for Version 2.9.6 (Release 2014b)
March 2015 Online only Revised for Version 2.9.7 (Release 2015a)
September 2015 Online only Revised for Version 2.10 (Release 2015b)
March 2016 Online only Revised for Version 3.0 (Release 2016a)

v

Contents

Getting Started
1

Filter Design HDL Coder Product Description 1-2
Key Features . 1-2

Automated HDL Code Generation . 1-3

Basic FIR Filter . 1-4
Create a Folder for Your Tutorial Files 1-4
Design a FIR Filter in FDATool . 1-4
Quantize the Filter . 1-6
Configure and Generate VHDL Code 1-9
Explore the Generated VHDL Code 1-16
Verify the Generated VHDL Code . 1-17

Optimized FIR Filter . 1-24
Create a Folder for Your Tutorial Files 1-24
Design the FIR Filter in FDATool . 1-24
Quantize the FIR Filter . 1-26
Configure and Generate Optimized Verilog Code 1-29
Explore the Optimized Generated Verilog Code 1-38
Verify the Generated Verilog Code 1-39

IIR Filter . 1-45
Create a Folder for Your Tutorial Files 1-45
Design an IIR Filter in FDATool . 1-45
Quantize the IIR Filter . 1-47
Configure and Generate VHDL Code 1-51
Explore the Generated VHDL Code 1-56
Verify the Generated VHDL Code . 1-58

vi Contents

HDL Filter Code Generation Fundamentals
2

Starting Filter Design HDL Coder . 2-2
Opening the Filter Design HDL Coder GUI from FDATool . . 2-2
Opening the Filter Design HDL Coder GUI from the
filterbuilder GUI . 2-6

Opening the Filter Design HDL Coder GUI Using the
fdhdltool Command . 2-11

Selecting Target Language . 2-13

Generating HDL Code . 2-14
Applying Your Settings . 2-14
Generating HDL Code from the GUI 2-14
Generating HDL Code Using generatehdl 2-15

Capturing Code Generation Settings 2-16

Closing Code Generation Session . 2-18

HDL Code for Supported Filter Structures
3

Generate HDL from Filter System Objects 3-2

Multirate Filters . 3-4
Supported Multirate Filter Types . 3-4
Generating Multirate Filter Code . 3-4
Code Generation Options for Multirate Filters 3-4

Variable Rate CIC Filters . 3-10
Supported Variable Rate CIC Filter Types 3-10
Code Generation Options for Variable Rate CIC Filters 3-10

Cascade Filters . 3-13
Supported Cascade Filter Types . 3-13
Generating Cascade Filter Code . 3-13
Limitations for Code Generation with Cascade Filters 3-14

vii

Polyphase Sample Rate Converters 3-16
Code Generation for Polyphase Sample Rate Converter 3-16
HDL Implementation for Polyphase Sample Rate Converter 3-16

Multirate Farrow Sample Rate Converters 3-19
Code Generation for Multirate Farrow Sample Rate

Converters . 3-19
Generating Code for dsp.FarrowRateConverter Filters at the

Command Line . 3-19
Generating Code for dsp.FarrowRateConverter Filters in

the GUI . 3-20

Single-Rate Farrow Filters . 3-23
About Code Generation for Single-Rate Farrow Filters 3-23
Code Generation Properties for Farrow Filters 3-23
GUI Options for Farrow Filters . 3-25
Farrow Filter Code Generation Mechanics 3-27

Programmable Filter Coefficients for FIR Filters 3-30
GUI Options for Programmable Coefficients 3-31
Generating a Test Bench for Programmable FIR Coefficients 3-33
Using Programmable Coefficients with Serial FIR Filter

Architectures . 3-34

Programmable Filter Coefficients for IIR Filters 3-40
Generate a Processor Interface for a Programmable IIR

Filter . 3-41
Generating a Test Bench for Programmable IIR Coefficients 3-43
Addressing Scheme for Loading IIR Coefficients 3-45

DUC and DDC System Objects . 3-47
Limitations . 3-47

Optimization of HDL Filter Code
4

Speed vs. Area Tradeoffs . 4-2
Overview of Speed or Area Optimizations 4-2
Parallel and Serial Architectures . 4-3

viii Contents

Specifying Speed vs. Area Tradeoffs via generatehdl
Properties . 4-6

Select Architectures in the Generate HDL Dialog Box 4-9

Distributed Arithmetic for FIR Filters 4-21
Distributed Arithmetic Overview . 4-21
Requirements and Considerations for Generating Distributed

Arithmetic Code . 4-23
Distributed Arithmetic via generatehdl Properties 4-24
Distributed Arithmetic Options in the Generate HDL Dialog

Box . 4-25

Architecture Options for Cascaded Filters 4-30

CSD Optimizations for Coefficient Multipliers 4-31

Improving Filter Performance with Pipelining 4-32
Optimizing the Clock Rate with Pipeline Registers 4-32
Multiplier Input and Output Pipelining for FIR Filters 4-33
Optimizing Final Summation for FIR Filters 4-34
Specifying or Suppressing Registered Input and Output . . . 4-36

Overall HDL Filter Code Optimization 4-38
Optimize for HDL . 4-38
Set Error Margin for Test Bench . 4-39

Customization of HDL Filter Code
5

HDL File Names and Locations . 5-2
Setting the Location of Generated Files 5-2
Naming the Generated Files and Filter Entity 5-3
Set HDL File Name Extensions . 5-4
Splitting Entity and Architecture Code Into Separate Files . . 5-6

HDL Identifiers and Comments . 5-8
Specifying a Header Comment . 5-8
Resolving Entity or Module Name Conflicts 5-10
Resolving HDL Reserved Word Conflicts 5-11
Setting the Postfix String for VHDL Package Files 5-14

ix

Specifying a Prefix for Filter Coefficients 5-15
Specifying a Postfix String for Process Block Labels 5-16
Setting a Prefix for Component Instance Names 5-17
Setting a Prefix for Vector Names . 5-18

Ports and Resets . 5-20
Naming HDL Ports . 5-20
Specifying the HDL Data Type for Data Ports 5-21
Selecting Asynchronous or Synchronous Reset Logic 5-22
Setting the Asserted Level for the Reset Input Signal 5-23
Suppressing Generation of Reset Logic 5-25

HDL Constructs . 5-27
Representing VHDL Constants with Aggregates 5-27
Unrolling and Removing VHDL Loops 5-28
Using the VHDL rising_edge Function 5-29
Suppressing the Generation of VHDL Inline Configurations 5-30
Specifying VHDL Syntax for Concatenated Zeros 5-31
Specifying Input Type Treatment for Addition and Subtraction

Operations . 5-32
Suppressing Verilog Time Scale Directives 5-33
Using Complex Data and Coefficients 5-34

Verification of Generated HDL Filter Code
6

Testing with an HDL Test Bench . 6-2
Workflow for Testing with an HDL Test Bench 6-2
Enabling Test Bench Generation . 6-9
Renaming the Test Bench . 6-11
Splitting Test Bench Code and Data into Separate Files . . . 6-13
Configuring the Clock . 6-14
Configuring Resets . 6-16
Setting a Hold Time for Data Input Signals 6-19
Setting an Error Margin for Optimized Filter Code 6-21
Setting an Initial Value for Test Bench Inputs 6-23
Setting Test Bench Stimuli . 6-24
Setting a Postfix for Reference Signal Names 6-25

x Contents

Cosimulation of HDL Code with HDL Simulators 6-27
Generating HDL Cosimulation Blocks for Use with HDL

Simulators . 6-27
Generating a Simulink Model for Cosimulation with an HDL

Simulator . 6-29

Integration with Third-Party EDA Tools 6-36
Generate a Default Script . 6-36
Customize Scripts for Compilation and Simulation 6-37

Synthesis and Workflow Automation
7

Automation Scripts for Third-Party Synthesis Tools 7-2
Select a Synthesis Tool . 7-2
Customize Synthesis Script Generation 7-3
Programmatic Synthesis Automation 7-5

Properties — Alphabetical List
8

Function Reference
9

1

Getting Started

• “Filter Design HDL Coder Product Description” on page 1-2
• “Automated HDL Code Generation” on page 1-3
• “Basic FIR Filter” on page 1-4
• “Optimized FIR Filter” on page 1-24
• “IIR Filter” on page 1-45

1 Getting Started

1-2

Filter Design HDL Coder Product Description
Generate HDL code for fixed-point filters

Filter Design HDL Coder™ generates synthesizable, portable VHDL® and Verilog®

code for implementing fixed-point filters designed with MATLAB® on FPGAs or ASICs.
It automatically creates VHDL and Verilog test benches for simulating, testing, and
verifying the generated code.

Key Features

• Generation of synthesizable IEEE® 1076 compliant VHDL code and IEEE 1364-2001
compliant Verilog code

• Control over generated code content, optimization, and style
• Distributed arithmetic and other options for speed vs. area tradeoff and architecture

exploration
• VHDL and Verilog test-bench generation for quick verification and validation of

generated HDL filter code
• Simulation and synthesis script generation

 Automated HDL Code Generation

1-3

Automated HDL Code Generation

HDL code generation accelerates the development of application-specific integrated
circuit (ASIC) and field programmable gate array (FPGA) designs by bridging the gap
between system-level design and hardware development.

Traditionally, system designers and hardware developers use hardware description
languages (HDLs), such as VHDL and Verilog, to develop hardware filter designs.
HDLs provide a proven method for hardware design, but coding filter designs is labor-
intensive. Also, algorithms and system-level designs created using HDLs are difficult
to analyze, explore, and share. The Filter Design HDL Coder workflow automates the
implementation of designs in HDL.

First, an architect or designer uses DSP System Toolbox™ tools (FDATool or
filterbuilder) to design a filter algorithm targeted for hardware. Then, a designer
uses the Filter Design HDL Coder app (fdhdltool) or command-line interface
(generatehdl) to configure code generation options and generate a VHDL or Verilog
implementation of the design. Designers can easily modify these designs and share them
between teams, in HDL or MATLAB formats.

The generated HDL code adheres to a clean, readable coding style. The optional
generated HDL test bench confirms that the generated code behaves as expected, and can
accelerate system-level test bench implementation. Designers can also use Filter Design
HDL Coder software to generate test signals automatically and validate models against
standard reference designs.

This workflow enables designers to fine-tune algorithms and models through rapid
prototyping and experimentation, while spending less time on HDL implementation.

See Also
generatehdl

Related Examples
• “Starting Filter Design HDL Coder” on page 2-2
• “Generating HDL Code” on page 2-14

1 Getting Started

1-4

Basic FIR Filter

This tutorial guides you through the steps for designing a basic quantized discrete-time
FIR filter, generating VHDL code for the filter, and verifying the VHDL code with a
generated test bench.

In this section...

“Create a Folder for Your Tutorial Files” on page 1-4
“Design a FIR Filter in FDATool” on page 1-4
“Quantize the Filter” on page 1-6
“Configure and Generate VHDL Code” on page 1-9
“Explore the Generated VHDL Code” on page 1-16
“Verify the Generated VHDL Code” on page 1-17

Create a Folder for Your Tutorial Files

Set up a writable working folder outside your MATLAB installation folder to store files
that will be generated as you complete your tutorial work. The tutorial instructions
assume that you create the folder hdlfilter_tutorials on drive C.

Design a FIR Filter in FDATool

This section assumes that you are familiar with the MATLAB user interface and the
Filter Design & Analysis Tool (FDATool). The following instructions guide you through
the procedure of designing and creating a basic FIR filter using FDATool:

1 Start the MATLAB software.
2 Set your current folder to the folder you created in “Create a Folder for Your Tutorial

Files” on page 1-4.
3 Start the FDATool by entering the fdatool command in the MATLAB Command

Window. The Filter Design & Analysis Tool dialog box appears.

 Basic FIR Filter

1-5

4 In the Filter Design & Analysis Tool dialog box, check that the following filter
options are set:

Option Value

Response Type Lowpass

Design Method FIR Equiripple

1 Getting Started

1-6

Option Value

Filter Order Minimum order
Options Density Factor: 20
Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000
Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the FDATool creates for you. If
you do not have to change the filter, and Design Filter is grayed out, you are done
and can skip to “Quantize the Filter” on page 1-6.

5 If you modified options listed in step 4, click Design Filter. The FDATool creates
a filter for the specified design and displays the following message in the FDATool
status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the DSP System
Toolbox documentation.

Quantize the Filter

You must quantize filters for HDL code generation. To quantize your filter,

1 Open the basic FIR filter design you created in “Design a FIR Filter in FDATool” on
page 1-4.

2
Click the Set Quantization Parameters button in the left-side toolbar. The
FDATool displays a Filter arithmetic menu in the bottom half of its dialog box.

 Basic FIR Filter

1-7

3 Select Fixed-point from the Filter arithmetic list. Then select Specify all
from the Filter precision list. The FDATool displays the first of three tabbed
panels of quantization parameters across the bottom half of its dialog box.

1 Getting Started

1-8

Use the quantization options to test the effects of various settings on the
performance and accuracy of the quantized filter.

Set the quantization parameters as follows:

 Basic FIR Filter

1-9

Tab Parameter Setting

Coefficients Numerator word length 16

 Best-precision fraction lengths Selected

 Use unsigned representation Cleared

 Scale the numerator coefficients to fully
utilize the entire dynamic range

Cleared

Input/Output Input word length 16

 Input fraction length 15

 Output word length 16

Filter Internals Rounding mode Floor

 Overflow mode Saturate

 Accum. word length 40

4 Click Apply.

For more information on quantizing filters with the FDATool, see the DSP System
Toolbox documentation.

Configure and Generate VHDL Code

After you quantize your filter, you are ready to configure coder options and generate
VHDL code for the filter. This section guides you through starting the Filter Design
HDL Coder GUI, setting options, and generating the VHDL code and test bench for the
basic FIR filter you designed and quantized in “Design a FIR Filter in FDATool” on page
1-4 and “Quantize the Filter” on page 1-6.

1 Start the Filter Design HDL Coder GUI by selecting Targets > Generate HDL in
the FDATool dialog box. The FDATool displays the Generate HDL dialog box.

1 Getting Started

1-10

2 Find the Filter Design HDL Coder online help.

a In the MATLAB window, click the Help button in the toolbar or click Help >
Product Help.

 Basic FIR Filter

1-11

b In the Contents pane of the Help browser, select the Filter Design HDL
Coder entry.

c Minimize the Help browser.
3 In the Generate HDL dialog box, click the Help button. A small context-sensitive

help window opens. The window displays information about the dialog box.
4 Close the Help window.
5 Place your cursor over the Folder label or text box in the Target pane of the

Generate HDL dialog box, and right-click. A What's This? button appears.

6 Click What's This? The context-sensitive help window displays information
describing the Folder option. Configure the contents and style of the generated HDL
code, using the context-sensitive help to get more information as you work. A help
topic is available for each option.

7 In the Name text box of the Target pane, replace the default name with basicfir.
This option names the VHDL entity and the file that contains the VHDL code for the
filter.

8 Select the Global settings tab of the GUI. Then select the General tab of the
Additional settings section of the GUI. Type Tutorial - Basic FIR Filter
in the Comment in header text box. The coder adds the comment to the end of the
header comment block in each generated file.

1 Getting Started

1-12

9 Select the Ports tab of the Additional settings section of the GUI.

10 Change the names of the input and output ports. In the Input port text box,
replace filter_in with data_in. In the Output port text box, replace
filter_out with data_out.

 Basic FIR Filter

1-13

11 Clear the check box for the Add input register option. The Ports pane now looks
like the following.

12 Click the Test Bench tab in the Generate HDL dialog box. In the File name text
box, replace the default name with basicfir_tb. This option names the generated
test bench file.

1 Getting Started

1-14

13 Click Generate to start the code generation process.

The coder displays messages in the MATLAB Command Window as it generates the
filter and test bench VHDL files:
Starting VHDL code generation process for filter: basicfir

Generating: C:\hdlfilter_tutorials\hdlsrc\basicfir.vhd

Starting generation of basicfir VHDL entity

Starting generation of basicfir VHDL architecture

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: basicfir

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating Test bench: C:\hdlfilter_tutorials\hdlsrc\basicfir_tb.vhd

Please wait ...

Done generating VHDL Test Bench

As the messages indicate, the coder creates the folder hdlsrc under your current
working folder and places the files basicfir.vhd and basicfir_tb.vhd in that
folder.

 Basic FIR Filter

1-15

Observe that the messages include hyperlinks to the generated code and test bench
files. By clicking these hyperlinks, you can open the code files directly into the
MATLAB Editor.

The generated VHDL code has the following characteristics:

• VHDL entity named basicfir.
• Registers that use asynchronous resets when the reset signal is active high (1).
• Ports have the following names:

VHDL Port Name

Input data_in

Output data_out

Clock input clk

Clock enable input clk_enable

Reset input reset

• An extra register for handling filter output.
• Clock input, clock enable input, and reset ports are of type STD_LOGIC and data

input and output ports are of type STD_LOGIC_VECTOR.
• Coefficients are named coeffn, where n is the coefficient number, starting with

1.
• Type-safe representation is used when zeros are concatenated: '0' & '0'...
• Registers are generated with the statement ELSIF clk'event AND clk='1'

THEN rather than with the rising_edge function.
• The postfix string _process is appended to process names.

The generated test bench:

• Is a portable VHDL file.
• Forces clock, clock enable, and reset input signals.
• Forces the clock enable input signal to active high.
• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for 5

nanoseconds.
• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.

1 Getting Started

1-16

• Applies a hold time of 2 nanoseconds to data input signals.
• For a FIR filter, applies impulse, step, ramp, chirp, and white noise stimulus

types.
14 When you have finished generating code, click Close to close the Generate HDL

dialog box.

Explore the Generated VHDL Code

Get familiar with the generated VHDL code by opening and browsing through the file
basicfir.vhd in an ASCII or HDL simulator editor.

1 Open the generated VHDL filter file basicfir.vhd.
2 Search for basicfir. This line identifies the VHDL module, using the string you

specified for the Name option in the Target pane. See step 5 in “Configure and
Generate VHDL Code” on page 1-9.

3 Search for Tutorial. This section is where the coder places the text you entered
for the Comment in header option. See step 10 in “Configure and Generate VHDL
Code” on page 1-9.

4 Search for HDL Code. This section lists coder options you modified in “Configure and
Generate VHDL Code” on page 1-9.

5 Search for Filter Settings. This section describes the filter design and
quantization settings as you specified in “Design a FIR Filter in FDATool” on page
1-4 and “Quantize the Filter” on page 1-6.

6 Search for ENTITY. This line names the VHDL entity, using the string you specified
for the Name option in the Target pane. See step 5 in “Configure and Generate
VHDL Code” on page 1-9.

7 Search for PORT. This PORT declaration defines the clock, clock enable, reset, and
data input and output ports. The ports for clock, clock enable, and reset signals
are named with default strings. The ports for data input and output are named as
you specified on the Input port and Output port options on the Ports tab of the
Generate HDL dialog box. See step 12 in “Configure and Generate VHDL Code” on
page 1-9.

8 Search for Constants. This section defines the coefficients. They are named using
the default naming scheme, coeffn, where n is the coefficient number, starting with
1.

9 Search for Signals. This section of code defines the signals for the filter.

 Basic FIR Filter

1-17

10 Search for process. The PROCESS block name Delay_Pipeline_process includes
the default PROCESS block postfix string _process.

11 Search for IF reset. This code asserts the reset signal. The default, active high (1),
was specified. Also note that the PROCESS block applies the default asynchronous
reset style when generating VHDL code for registers.

12 Search for ELSIF. This code checks for rising edges when the filter operates on
registers. The default ELSIF clk'event statement is used instead of the optional
rising_edge function.

13 Search for Output_Register. This section of code writes the filter data to an output
register. Code for this register is generated by default. In step 13 in “Configure and
Generate VHDL Code” on page 1-9, you cleared the Add input register option,
but left the Add output register selected. Also note that the PROCESS block name
Output_Register_process includes the default PROCESS block postfix string
_process.

14 Search for data_out. This section of code drives the output data of the filter.

Verify the Generated VHDL Code

This section explains how to verify the generated VHDL code for the basic FIR filter with
the generated VHDL test bench. This tutorial uses the Mentor Graphics® ModelSim®

software as the tool for compiling and simulating the VHDL code. You can also use other
VHDL simulation tool packages.

To verify the filter code, complete the following steps:

1 Start your Mentor Graphics ModelSim simulator.
2 Set the current folder to the folder that contains your generated VHDL files. For

example:

1 Getting Started

1-18

3 If desired, create a design library to store the compiled VHDL entities, packages,
architectures, and configurations. In the Mentor Graphics ModelSim simulator, you
can create a design library with the vlib command.

4 Compile the generated filter and test bench VHDL files. In the Mentor Graphics
ModelSim simulator, you compile VHDL code with the vcom command. The following
commands compile the filter and filter test bench VHDL code.

vcom basicfir.vhd

vcom basicfir_tb.vhd

The following screen display shows this command sequence and informational
messages displayed during compilation.

 Basic FIR Filter

1-19

5 Load the test bench for simulation. The procedure for loading the test bench varies
depending on the simulator you are using. In the Mentor Graphics ModelSim
simulator, you load the test bench for simulation with the vsim command. For
example:

vsim work.basicfir_tb

The following figure shows the results of loading work.basicfir_tb with the vsim
command.

1 Getting Started

1-20

6 Open a display window for monitoring the simulation as the test bench runs. In the
Mentor Graphics ModelSim simulator, use the following command to open a wave
window and view the results of the simulation as HDL waveforms.

The following wave window displays.

 Basic FIR Filter

1-21

7 To start running the simulation, issue the start simulation command for your
simulator. For example, in the Mentor Graphics ModelSim simulator, you can start a
simulation with the run command.

The following display shows the run -all command being used to start a
simulation.

1 Getting Started

1-22

As your test bench simulation runs, watch for error messages. If error messages
appear, interpret them as they pertain to your filter design and the HDL code
generation options you selected. Determine whether the results are expected based
on the customizations you specified when generating the filter VHDL code.

The following wave window shows the simulation results as HDL waveforms.

 Basic FIR Filter

1-23

1 Getting Started

1-24

Optimized FIR Filter

In this section...

“Create a Folder for Your Tutorial Files” on page 1-24
“Design the FIR Filter in FDATool” on page 1-24
“Quantize the FIR Filter” on page 1-26
“Configure and Generate Optimized Verilog Code” on page 1-29
“Explore the Optimized Generated Verilog Code” on page 1-38
“Verify the Generated Verilog Code” on page 1-39

Create a Folder for Your Tutorial Files

Set up a writable working folder outside your MATLAB installation folder to store files
that will be generated as you complete your tutorial work. The tutorial instructions
assume that you create the folder hdlfilter_tutorials on drive C.

Design the FIR Filter in FDATool

This tutorial guides you through the steps for designing an optimized quantized discrete-
time FIR filter, generating Verilog code for the filter, and verifying the Verilog code with
a generated test bench.

This section assumes that you are familiar with the MATLAB user interface and the
Filter Design & Analysis Tool (FDATool).

1 Start the MATLAB software.
2 Set your current folder to the folder you created in “Create a Folder for Your Tutorial

Files” on page 1-24.
3 Start the FDATool by entering the fdatool command in the MATLAB Command

Window. The Filter Design & Analysis Tool dialog box appears.

 Optimized FIR Filter

1-25

4 In the Filter Design & Analysis Tool dialog box, set the following filter options:

Option Value

Response Type Lowpass

Design Method FIR Equiripple

Filter Order Minimum order

1 Getting Started

1-26

Option Value

Options Density Factor: 20

Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000
Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the FDATool creates for you. If
you do not have to change the filter, and Design Filter is grayed out, you are done
and can skip to “Quantize the Filter” on page 1-6.

5 Click Design Filter. The FDATool creates a filter for the specified design. The
following message appears in the FDATool status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the DSP System
Toolbox documentation.

Quantize the FIR Filter

You must quantize filters for HDL code generation. To quantize your filter,

1 Open the FIR filter design you created in “Design the FIR Filter in FDATool” on
page 1-24 if it is not already open.

2

Click the Set Quantization Parameters button in the left-side toolbar. The
FDATool displays a Filter arithmetic menu in the bottom half of its dialog box.

 Optimized FIR Filter

1-27

3 Select Fixed-point from the list. Then select Specify all from the Filter
precision list. The FDATool displays the first of three tabbed panels of quantization
parameters across the bottom half of its dialog box.

1 Getting Started

1-28

Use the quantization options to test the effects of various settings on the
performance and accuracy of the quantized filter.

4 Set the quantization parameters as follows:

 Optimized FIR Filter

1-29

Tab Parameter Setting

Coefficients Numerator word length 16

 Best-precision fraction lengths Selected

 Use unsigned representation Cleared

 Scale the numerator coefficients to fully
utilize the entire dynamic range

Cleared

Input/Output Input word length 16

 Input fraction length 15

 Output word length 16

Filter Internals Rounding mode Floor

 Overflow mode Saturate

 Accum. word length 40

5 Click Apply.

For more information on quantizing filters with the FDATool, see the DSP System
Toolbox documentation.

Configure and Generate Optimized Verilog Code

After you quantize your filter, you are ready to configure coder options and generate
Verilog code for the filter. This section guides you through starting the GUI, setting
options, and generating the Verilog code and a test bench for the FIR filter you designed
and quantized in “Design the FIR Filter in FDATool” on page 1-24 and “Quantize the
FIR Filter” on page 1-26.

1 Start the Filter Design HDL Coder GUI by selecting Targets > Generate HDL in
the FDATool dialog box. The FDATool displays the Generate HDL dialog box.

1 Getting Started

1-30

 Optimized FIR Filter

1-31

2 Select Verilog for the Language option, as shown in the following figure.

3 In the Name text box of the Target pane, replace the default name with optfir.
This option names the Verilog module and the file that contains the Verilog code for
the filter.

4 In the Filter architecture pane, select the Optimize for HDL option. This option
is for generating HDL code that is optimized for performance or space requirements.
When this option is enabled, the coder makes tradeoffs concerning data types and
might ignore your quantization settings to achieve optimizations. When you use
the option, keep in mind that you do so at the cost of potential numeric differences
between filter results produced by the original filter object and the simulated results
for the optimized HDL code.

5 Select CSD for the Coefficient multipliers option. This option optimizes coefficient
multiplier operations by instructing the coder to replace them with additions
of partial products produced by a canonical signed digit (CSD) technique. This
technique minimizes the number of addition operations required for constant
multiplication by representing binary numbers with a minimum count of nonzero
digits.

6 Select the Add pipeline registers option. For FIR filters, this option optimizes
final summation. The coder creates a final adder that performs pairwise addition
on successive products and includes a stage of pipeline registers after each level
of the tree. When used for FIR filters, this option can produce numeric differences
between results produced by the original filter object and the simulated results for
the optimized HDL code.

7 The Generate HDL dialog box now appears as shown.

1 Getting Started

1-32

8 Select the Global settings tab of the GUI. Then select the General tab of the
Additional settings section.

In the Comment in header text box, type Tutorial - Optimized FIR Filter.
The coder adds the comment to the end of the header comment block in each
generated file.

 Optimized FIR Filter

1-33

9 Select the Ports tab of the Additional settings section of the GUI.

1 Getting Started

1-34

10 Change the names of the input and output ports. In the Input port text box,
replace filter_in with data_in. In the Output port text box, replace
filter_out with data_out.

11 Clear the check box for the Add input register option. The Ports pane now looks
as shown.

12 Click the Test Bench tab in the Generate HDL dialog box. In the File name text
box, replace the default name with optfir_tb. This option names the generated
test bench file.

 Optimized FIR Filter

1-35

13 In the Test Bench pane, click the Configuration tab. Observe that the Error
margin (bits) option is enabled. This option is enabled because previously selected
optimization options (such as Add pipeline registers) can potentially produce
numeric results that differ from the results produced by the original filter object.
You can use this option to adjust the number of least significant bits the test bench
ignores during comparisons before generating a warning.

1 Getting Started

1-36

14 In the Generate HDL dialog box, click Generate to start the code generation
process. When code generation completes, click Close to close the dialog box.

The coder displays the following messages in the MATLAB Command Window as it
generates the filter and test bench Verilog files:
Starting Verilog code generation process for filter: optfir

Generating: C:\hdlfilter_tutorials\hdlsrc\optfir.v

Starting generation of optfir Verilog module

Starting generation of optfir Verilog module body

HDL latency is 8 samples

Successful completion of Verilog code generation process for filter: optfir

Starting generation of VERILOG Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating Test bench: C:\hdlfilter_tutorials\hdlsrc\optfir_tb.v

Please wait ...

Done generating VERILOG Test Bench

As the messages indicate, the coder creates the folder hdlsrc under your current
working folder and places the files optfir.v and optfir_tb.v in that folder.

 Optimized FIR Filter

1-37

Observe that the messages include hyperlinks to the generated code and test bench
files. By clicking these hyperlinks, you can open the code files directly into the
MATLAB Editor.

The generated Verilog code has the following characteristics:

• Verilog module named optfir.
• Registers that use asynchronous resets when the reset signal is active high (1).
• Generated code that optimizes its use of data types and eliminates redundant

operations.
• Coefficient multipliers optimized with the CSD technique.
• Final summations optimized using a pipelined technique.
• Ports that have the following names:

Verilog Port Name

Input data_in

Output data_out

Clock input clk

Clock enable input clk_enable

Reset input reset

• An extra register for handling filter output.
• Coefficients named coeffn, where n is the coefficient number, starting with 1.
• Type-safe representation is used when zeros are concatenated: '0' & '0'...
• The postfix string _process is appended to sequential (begin) block names.

The generated test bench:

• Is a portable Verilog file.
• Forces clock, clock enable, and reset input signals.
• Forces the clock enable input signal to active high.
• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for 5

nanoseconds.
• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.

1 Getting Started

1-38

• Applies a hold time of 2 nanoseconds to data input signals.
• Applies an error margin of 4 bits.
• For a FIR filter, applies impulse, step, ramp, chirp, and white noise stimulus

types.

Explore the Optimized Generated Verilog Code

Get familiar with the optimized generated Verilog code by opening and browsing through
the file optfir.v in an ASCII or HDL simulator editor:

1 Open the generated Verilog filter file optcfir.v.
2 Search for optfir. This line identifies the Verilog module, using the string you

specified for the Name option in the Target pane. See step 3 in “Configure and
Generate Optimized Verilog Code” on page 1-29.

3 Search for Tutorial. This section of code is where the coder places the text you
entered for the Comment in header option. See step 9 in “Configure and Generate
Optimized Verilog Code” on page 1-29.

4 Search for HDL Code. This section lists the coder options you modified in “Configure
and Generate Optimized Verilog Code” on page 1-29.

5 Search for Filter Settings. This section of the VHDL code describes the filter
design and quantization settings as you specified in “Design the FIR Filter in
FDATool” on page 1-24 and “Quantize the FIR Filter” on page 1-26.

6 Search for module. This line names the Verilog module, using the string you
specified for the Name option in the Target pane. This line also declares the list
of ports, as defined by options on the Ports pane of the Generate HDL dialog box.
The ports for data input and output are named with the strings you specified for the
Input port and Output port options on the Ports tab of the Generate HDL dialog
box. See steps 3 and 11 in “Configure and Generate Optimized Verilog Code” on page
1-29.

7 Search for input. This line and the four lines that follow, declare the direction mode
of each port.

8 Search for Constants. This code defines the coefficients. They are named using the
default naming scheme, coeffn, where n is the coefficient number, starting with 1.

9 Search for Signals. This code defines the signals of the filter.
10 Search for sumvector1. This area of code declares the signals for implementing an

instance of a pipelined final adder. Signal declarations for four additional pipelined

 Optimized FIR Filter

1-39

final adders are also included. These signals are used to implement the pipelined
FIR adder style optimization specified with the Add pipeline registers option. See
step 7 in “Configure and Generate Optimized Verilog Code” on page 1-29.

11 Search for process. The block name Delay_Pipeline_process includes the
default block postfix string _process.

12 Search for reset. This code asserts the reset signal. The default, active high (1), was
specified. Also note that the process applies the default asynchronous reset style
when generating code for registers.

13 Search for posedge. This Verilog code checks for rising edges when the filter
operates on registers.

14 Search for sumdelay_pipeline_process1. This block implements the pipeline
register stage of the pipeline FIR adder style you specified in step 7 of “Configure
and Generate Optimized Verilog Code” on page 1-29.

15 Search for output_register. This code writes the filter output to an output
register. The code for this register is generated by default. In step 12 in “Configure
and Generate Optimized Verilog Code” on page 1-29 , you cleared the Add input
register option, but left the Add output register selected. Also note that the
process name Output_Register_process includes the default process postfix
string _process.

16 Search for data_out. This code drives the output data of the filter.

Verify the Generated Verilog Code

This section explains how to verify the optimized generated Verilog code for the FIR filter
with the generated Verilog test bench. This tutorial uses the Mentor Graphics ModelSim
simulator as the tool for compiling and simulating the Verilog code. You can use other
HDL simulation tool packages.

To verify the filter code, complete the following steps:

1 Start your simulator. When you start the Mentor Graphics ModelSim simulator, a
screen display similar to the following appears.

1 Getting Started

1-40

2 Set the current folder to the folder that contains your generated Verilog files. For
example:

cd hdlsrc

3 If desired, create a design library to store the compiled Verilog modules. In the
Mentor Graphics ModelSim simulator, you can create a design library with the vlib
command.

vlib work

4 Compile the generated filter and test bench Verilog files. In the Mentor Graphics
ModelSim simulator, you compile Verilog code with the vlog command. The
following commands compile the filter and filter test bench Verilog code.

vlog optfir.v

vlog optfir_tb.v

The following screen display shows this command sequence and informational
messages displayed during compilation.

 Optimized FIR Filter

1-41

5 Load the test bench for simulation. The procedure for loading the test bench varies
depending on the simulator you are using. In the Mentor Graphics ModelSim
simulator, load the test bench for simulation with the vsim command. For example:

vsim optfir_tb

The following display shows the results of loading optfir_tb with the vsim
command.

1 Getting Started

1-42

6 Open a display window for monitoring the simulation as the test bench runs. In the
Mentor Graphics ModelSim simulator, can use the following command to open a
wave window and view the results of the simulation as HDL waveforms.

add wave *

The following wave window opens:

7 To start running the simulation, issue the start simulation command for your
simulator. For example, in the Mentor Graphics ModelSim simulator, you can start a
simulation with the run command.

The following display shows the run -all command being used to start a
simulation.

 Optimized FIR Filter

1-43

As your test bench simulation runs, watch for error messages. If error messages
appear, interpret them as they pertain to your filter design and the HDL code
generation options you selected. Determine whether the results are expected based
on the customizations you specified when generating the filter Verilog code.

The following wave window shows the simulation results as HDL waveforms.

1 Getting Started

1-44

 IIR Filter

1-45

IIR Filter

In this section...

“Create a Folder for Your Tutorial Files” on page 1-45
“Design an IIR Filter in FDATool” on page 1-45
“Quantize the IIR Filter” on page 1-47
“Configure and Generate VHDL Code” on page 1-51
“Explore the Generated VHDL Code” on page 1-56
“Verify the Generated VHDL Code” on page 1-58

Create a Folder for Your Tutorial Files

Set up a writable working folder outside your MATLAB installation folder to store files
that will be generated as you complete your tutorial work. The tutorial instructions
assume that you create the folder hdlfilter_tutorials on drive C.

Design an IIR Filter in FDATool

This tutorial guides you through the steps for designing an IIR filter, generating Verilog
code for the filter, and verifying the Verilog code with a generated test bench.

This section guides you through the procedure of designing and creating a filter for an
IIR filter. This section assumes that you are familiar with the MATLAB user interface
and the Filter Design & Analysis Tool (FDATool).

1 Start the MATLAB software.
2 Set your current folder to the folder you created in “Create a Folder for Your Tutorial

Files” on page 1-45.
3 Start the FDATool by entering the fdatool command in the MATLAB Command

Window. The Filter Design & Analysis Tool dialog box appears.

1 Getting Started

1-46

4 In the Filter Design & Analysis Tool dialog box, set the following filter options:

Option Value

Response Type Highpass

Design Method IIR Butterworth

Filter Order Specify order: 5

 IIR Filter

1-47

Option Value

Frequency Specifications Units: Hz

Fs: 48000

Fc: 10800

5 Click Design Filter. The FDATool creates a filter for the specified design. The
following message appears in the FDATool status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see “Use FDATool with
DSP System Toolbox Software” in the DSP System Toolbox documentation.

Quantize the IIR Filter

You should quantize filters for HDL code generation. To quantize your filter,

1 Open the IIR filter design you created in “Design an IIR Filter in FDATool” on page
1-45 if it is not already open.

2
Click the Set Quantization Parameters button in the left-side toolbar. The
FDATool displays the Filter arithmetic list in the bottom half of its dialog box.

1 Getting Started

1-48

3 Select Fixed-point from the list. The FDATool displays the first of three tabbed
panels of its dialog box.

 IIR Filter

1-49

Use the quantization options to test the effects of various settings on the
performance and accuracy of the quantized filter.

4 Select the Filter Internals tab and set Rounding mode to Floor and Overflow
Mode to Saturate.

5 Click Apply. The quantized filter appears as follows.

1 Getting Started

1-50

For more information on quantizing filters with the FDATool, see “Use FDATool with
DSP System Toolbox Software” in the DSP System Toolbox documentation.

 IIR Filter

1-51

Configure and Generate VHDL Code

After you quantize your filter, you are ready to configure coder options and generate
VHDL code. This section guides you through starting the Filter Design HDL Coder
GUI, setting options, and generating the VHDL code and a test bench for the IIR filter
you designed and quantized in “Design an IIR Filter in FDATool” on page 1-45 and
“Quantize the IIR Filter” on page 1-47.

1 Start the Filter Design HDL Coder GUI by selecting Targets > Generate HDL in
the FDATool dialog box. The FDATool displays the Generate HDL dialog box.

1 Getting Started

1-52

2 In the Name text box of the Target pane, type iir. This option names the VHDL
entity and the file that contains the VHDL code for the filter.

3 Select the Global settings tab of the GUI. Then select the General tab of the
Additional settings section.

In the Comment in header text box, type Tutorial - IIR Filter. The coder
adds the comment to the end of the header comment block in each generated file.

4 Select the Ports tab. The Ports pane appears.

5 Clear the check box for the Add output register option. The Ports pane now
appears as in the following figure.

 IIR Filter

1-53

6 Select the Advanced tab. The Advanced pane appears.

7 Select the Use 'rising_edge' for registers option. The Advanced pane now
appears as in the following figure.

1 Getting Started

1-54

8 Click the Test bench tab in the Generate HDL dialog box. In the File name text
box, replace the default name with iir_tb. This option names the generated test
bench file.

9 In the Generate HDL dialog box, click Generate to start the code generation
process. When code generation completes, click OK to close the dialog box.

 IIR Filter

1-55

The coder displays the following messages in the MATLAB Command Window as it
generates the filter and test bench VHDL files:
Starting VHDL code generation process for filter: iir

Starting VHDL code generation process for filter: iir

Generating: H:\hdlsrc\iir.vhd

Starting generation of iir VHDL entity

Starting generation of iir VHDL architecture

Second-order section, # 1

Second-order section, # 2

First-order section, # 3

HDL latency is 1 samples

Successful completion of VHDL code generation process for filter: iir

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 2172 samples.

Generating Test bench: H:\hdlsrc\filter_tb.vhd

Please wait ...

Done generating VHDL Test Bench

Starting VHDL code generation process for filter: iir

Starting VHDL code generation process for filter: iir

Generating: H:\hdlsrc\iir.vhd

Starting generation of iir VHDL entity

Starting generation of iir VHDL architecture

Second-order section, # 1

Second-order section, # 2

First-order section, # 3

HDL latency is 1 samples

Successful completion of VHDL code generation process for filter: iir

As the messages indicate, the coder creates the folder hdlsrc under your current
working folder and places the files iir.vhd and iir_tb.vhd in that folder.

Observe that the messages include hyperlinks to the generated code and test bench
files. By clicking these hyperlinks, you can open the code files directly into the
MATLAB Editor.

The generated VHDL code has the following characteristics:

• VHDL entity named iir.
• Registers that use asynchronous resets when the reset signal is active high (1).
• Ports have the following default names:

VHDL Port Name

Input filter_in

Output filter_out

Clock input clk

1 Getting Started

1-56

VHDL Port Name

Clock enable input clk_enable

Reset input reset

• An extra register for handling filter input.
• Clock input, clock enable input, and reset ports are of type STD_LOGIC and data

input and output ports are of type STD_LOGIC_VECTOR.
• Coefficients are named coeffn, where n is the coefficient number, starting with

1.
• Type-safe representation is used when zeros are concatenated: '0' & '0'...
• Registers are generated with the rising_edge function rather than the

statement ELSIF clk'event AND clk='1' THEN.
• The postfix string _process is appended to process names.

The generated test bench:

• Is a portable VHDL file.
• Forces clock, clock enable, and reset input signals.
• Forces the clock enable input signal to active high.
• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for 5

nanoseconds.
• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.
• Applies a hold time of 2 nanoseconds to data input signals.
• For an IIR filter, applies impulse, step, ramp, chirp, and white noise stimulus

types.

Explore the Generated VHDL Code

Get familiar with the generated VHDL code by opening and browsing through the file
iir.vhd in an ASCII or HDL simulator editor.

1 Open the generated VHDL filter file iir.vhd.
2 Search for iir. This line identifies the VHDL module, using the string you specified

for the Name option in the Target pane. See step 2 in “Configure and Generate
VHDL Code” on page 1-51.

 IIR Filter

1-57

3 Search for Tutorial. This section is where the coder places the text you entered
for the Comment in header option. See step 5 in “Configure and Generate VHDL
Code” on page 1-51.

4 Search for HDL Code. This section lists coder options you modified in“Configure and
Generate VHDL Code” on page 1-51.

5 Search for Filter Settings. This section of the VHDL code describes the filter
design and quantization settings as you specified in “Design an IIR Filter in
FDATool” on page 1-45 and “Quantize the IIR Filter” on page 1-47.

6 Search for ENTITY. This line names the VHDL entity, using the string you specified
for the Name option in the Target pane. See step 2 in “Configure and Generate
VHDL Code” on page 1-51.

7 Search for PORT. This PORT declaration defines the filter's clock, clock enable, reset,
and data input and output ports. The ports for clock, clock enable, reset, and data
input and output signals are named with default strings.

8 Search for CONSTANT. This code defines the coefficients. They are named using the
default naming scheme, coeff_xm_sectionn, where x is a or b, m is the coefficient
number, and n is the section number.

9 Search for SIGNAL. This code defines the signals of the filter.
10 Search for input_reg_process. The PROCESS block name input_reg_process

includes the default PROCESS block postfix string _process. This code reads the
filter input from an input register. Code for this register is generated by default. In
step 7 in “Configure and Generate VHDL Code” on page 1-51, you cleared the
Add output register option, but left the Add input register option selected.

11 Search for IF reset. This code asserts the reset signal. The default, active high (1),
was specified. Also note that the PROCESS block applies the default asynchronous
reset style when generating VHDL code for registers.

12 Search for ELSIF. This code checks for rising edges when the filter operates on
registers. The rising_edge function is used as you specified in the Advanced
pane of the Generate HDL dialog box. See step 10 in “Configure and Generate VHDL
Code” on page 1-51.

13 Search for Section 1. This section is where second-order section 1 data is filtered.
Similar sections of VHDL code apply to another second-order section and a first-
order section.

14 Search for filter_out. This code drive the filter output data.

1 Getting Started

1-58

Verify the Generated VHDL Code

This section explains how to verify the generated VHDL code for the IIR filter with
the generated VHDL test bench. This tutorial uses the Mentor Graphics ModelSim
simulator as the tool for compiling and simulating the VHDL code. You can use other
HDL simulation tool packages.

To verify the filter code, complete the following steps:

1 Start your simulator. When you start the Mentor Graphics ModelSim simulator, a
screen display similar to the following appears.

2 Set the current folder to the folder that contains your generated VHDL files. For
example:

cd hdlsrc

3 If desired, create a design library to store the compiled VHDL entities, packages,
architectures, and configurations. In the Mentor Graphics ModelSim simulator, you
can create a design library with the vlib command.

vlib work

4 Compile the generated filter and test bench VHDL files. In the Mentor Graphics
ModelSim simulator, you compile VHDL code with the vcom command. The following
the commands compile the filter and filter test bench VHDL code.

vcom iir.vhd

 IIR Filter

1-59

vcom iir_tb.vhd

The following screen display shows this command sequence and informational
messages displayed during compilation.

5 Load the test bench for simulation. The procedure for loading the test bench varies
depending on the simulator you are using. In the Mentor Graphics ModelSim
simulator, you load the test bench for simulation with the vsim command. For
example:

vsim work.iir_tb

The following display shows the results of loading work.iir_tb with the vsim
command.

1 Getting Started

1-60

6 Open a display window for monitoring the simulation as the test bench runs. In the
Mentor Graphics ModelSim simulator, use the following command to open a wave
window and view the results of the simulation as HDL waveforms.

add wave *

The following wave window displays.

 IIR Filter

1-61

7 To start running the simulation, issue the start simulation command for your
simulator. For example, in the Mentor Graphics ModelSim simulator, you can start a
simulation with the run command.

The following display shows the run -all command being used to start a
simulation.

1 Getting Started

1-62

As your test bench simulation runs, watch for error messages. If error messages
appear, interpret them as they pertain to your filter design and the HDL code
generation options you selected. Determine whether the results are expected based
on the customizations you specified when generating the filter VHDL code.

Note:

• The warning messages that note Time: 0 ns in the preceding display are
not errors and you can ignore them.

• The failure message that appears in the preceding display is not flagging an
error. If the message includes the string Test Complete, the test bench has
run to completion without encountering an error. The Failure part of the
message is tied to the mechanism that the coder uses to end the simulation.

The following wave window shows the simulation results as HDL waveforms.

 IIR Filter

1-63

2

HDL Filter Code Generation
Fundamentals

• “Starting Filter Design HDL Coder” on page 2-2
• “Selecting Target Language” on page 2-13
• “Generating HDL Code” on page 2-14
• “Capturing Code Generation Settings” on page 2-16
• “Closing Code Generation Session” on page 2-18

2 HDL Filter Code Generation Fundamentals

2-2

Starting Filter Design HDL Coder

Opening the Filter Design HDL Coder GUI from FDATool

To open the initial Generate HDL dialog box from FDATool, do the following:

1 Enter the fdatool command at the MATLAB command prompt. The FDATool
displays its initial dialog box.

 Starting Filter Design HDL Coder

2-3

2 If the filter design is quantized, skip to step 3. Otherwise, quantize the filter by

clicking the Set Quantization Parameters button . The Filter arithmetic
menu appears in the bottom half of the dialog box.

2 HDL Filter Code Generation Fundamentals

2-4

Note: Supported filter structures allow both fixed-point and floating-point (double)
realizations.

3 If desired, adjust the setting of the Filter arithmetic option. The FDATool displays
the first of three tabbed panes of its dialog box.

 Starting Filter Design HDL Coder

2-5

4 Select Targets > Generate HDL. The FDATool displays the Generate HDL dialog
box.

2 HDL Filter Code Generation Fundamentals

2-6

If the coder does not support the structure of the current filter in the FDATool, an
error message appears. For example, if the current filter is a quantized, lattice-
coupled, allpass filter, the following message appears.

Opening the Filter Design HDL Coder GUI from the filterbuilder
GUI

If you are not familiar with the filterbuilder GUI, see the DSP System Toolbox
documentation.

To open the initial Generate HDL dialog box from the filterbuilder GUI, do the
following:

1 At the MATLAB command prompt, type a filterbuilder command that
corresponds to the filter response or filter object you want to design.

The following figure shows the default settings of the main pane of the
filterbuilder Lowpass Design dialog box.

 Starting Filter Design HDL Coder

2-7

2 Set the filter design parameters as required.
3 Optionally, select the check box Use a System object to implement filter.
4 Click the Data Types tab. Set Arithmetic to Fixed point and select data types

for internal calculations.

2 HDL Filter Code Generation Fundamentals

2-8

5 Click the Code Generation tab.

 Starting Filter Design HDL Coder

2-9

6 In the Code Generation pane, click the Generate HDL button. This button
opens the Generate HDL dialog box, passing in the current filter object from
filterbuilder.

2 HDL Filter Code Generation Fundamentals

2-10

7 Set the desired code generation and test bench options and generate code in the
Generate HDL dialog box.

 Starting Filter Design HDL Coder

2-11

Opening the Filter Design HDL Coder GUI Using the fdhdltool
Command

You can use the fdhdltool command to open the Generate HDL dialog box directly
from the MATLAB command line. The syntax is:

fdhdltool(Hd)

where Hd is a type of filter object that is supported for HDL code generation. If the filter
is a System object™, you must specify the input data type.

fdhdltool(FIRLowpass,numerictype(1,16,15))

The fdhdltool function is particularly useful when you must use the Filter Design
HDL Coder GUI to generate HDL code for filter structures that are not supported by
FDATool or filterbuilder. For example, the following commands create a Farrow
linear fractional delay filter object Hd, which is passed in to the fdhdltool function:

D = .3

farrowfilt = dfilt.farrowlinearfd(D)

fdhdltool(farrowfilt)

fdhdltool operates on a copy of the filter object, rather than the original object in
the MATLAB workspace. Changes made to the original filter object after invoking
fdhdltool do not apply to the copy and do not update the Generate HDL dialog box.

The naming convention for the copied object is filt_copy, where filt is the name of
the original filter object. This naming convention is reflected in the filter Name and test
bench File name fields, as shown in the following figure.

2 HDL Filter Code Generation Fundamentals

2-12

 Selecting Target Language

2-13

Selecting Target Language

HDL code is generated in either VHDL or Verilog. The language you choose for code
generation is called the target language. By default, the target language is VHDL. If you
retain the VHDL setting, Generate HDL dialog box options that are specific to Verilog
are disabled and are not selectable.

If you require or prefer to generate Verilog code, select Verilog for the Language
option in the Target pane of the Generate HDL dialog box. This setting causes the coder
to enable options that are specific to Verilog and to gray out and disable options that are
specific to VHDL.

Command-Line Alternative: Use the generatehdl function with the TargetLanguage
property to set the language to VHDL or Verilog.

2 HDL Filter Code Generation Fundamentals

2-14

Generating HDL Code

In this section...

“Applying Your Settings” on page 2-14
“Generating HDL Code from the GUI” on page 2-14
“Generating HDL Code Using generatehdl” on page 2-15

Applying Your Settings

When you generate HDL, either from the GUI or the command line, the coder

• Applies code generation option settings that you have edited
• Generates HDL code and other requested files, such as a test bench.

Tip To preserve your coder settings, use the Generate MATLAB code option, as
described in “Capturing Code Generation Settings” on page 2-16. Generate
MATLAB code is available only in the GUI. The function generatehdl does not have
an equivalent property.

Generating HDL Code from the GUI

This section assumes that you have opened the Generate HDL dialog box. See “Starting
Filter Design HDL Coder” on page 2-2.

To initiate HDL code generation for a filter and its test bench from the GUI, click
Generate on the Generate HDL dialog box. As code generation proceeds, a sequence of
messages similar to the following appears in the MATLAB Command Window:
Starting VHDL code generation process for filter: iir

Generating: D:\hdlfilter_tutorials\hdlsrc\iir.vhd

Starting generation of iir VHDL entity

Starting generation of iir VHDL architecture

First-order section, # 1

Second-order section, # 2

Second-order section, # 3

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: iir

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 2172 samples.

Generating: D:\hdlfilter_tutorials\hdlsrc\iir_tb.vhd

 Generating HDL Code

2-15

Please wait

Done generating VHDL test bench.

The messages include hyperlinks to the generated code and test bench files. Click these
hyperlinks to open the code files in the MATLAB Editor.

Generating HDL Code Using generatehdl

To initiate HDL code generation for a filter and its test bench from the command line,
use the generatehdl function. When you call the generatehdl function, specify the
filter name and (optionally) desired property name and property value pairs. When the
filter is a System object, you must specify the input data type property.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60)

Hd = design(d,'equiripple','filterstructure','dfsymfir','Systemobject',true)

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'Name','MyFilter',...

 'TargetLanguage','Verilog','GenerateHDLTestbench', 'on')

As code generation proceeds, a sequence of messages similar to the following appears in
the MATLAB Command Window:
Starting Verilog code generation process for filter: MyFilter

Generating: H:\hdlsrc\MyFilter.v

Starting generation of MyFilter Verilog module

Starting generation of MyFilter Verilog module body

Successful completion of Verilog code generation process for filter: MyFilter

HDL latency is 2 samples

Starting generation of VERILOG Test Bench.

Generating input stimulus

Done generating input stimulus; length 4486 samples.

Generating Test bench: H:\hdlsrc\MyFilter_tb.v

Creating stimulus vectors ...

Done generating VERILOG Test Bench.

The messages include hyperlinks to the generated code and test bench files. Click these
hyperlinks to open the code files in the MATLAB Editor.

2 HDL Filter Code Generation Fundamentals

2-16

Capturing Code Generation Settings

The Generate MATLAB code option of the Generate HDL dialog box makes command-
line scripting of HDL filter code and test bench generation easier. The option is located in
the Target section of the Generate HDL dialog box, as shown in the following figure.

By default, Generate MATLAB code is cleared.

When you select Generate MATLAB code and then generate HDL code, the coder
captures nondefault HDL code and test bench generation settings from the GUI and
writes out a MATLAB script. You can use this script to regenerate HDL code for the
filter, with the same settings. The script contains:

• Header comments that document the design settings for the filter object from which
code was generated.

• A function that takes a filter object as its argument, and passes the filter object in
to the generatehdl command. The property/value pairs passed to these commands
correspond to the code generation settings that applied at the time the file was
generated.

The coder writes the script to the target folder. The naming convention for the file is
filter_generatehdl.m, where filter is the filter name defined in the Name option.

When code generation completes, the generated script opens automatically for inspection
and editing.

The script contains comments that describe the configuration of the input filter object.
In subsequent sessions, you can use this information to construct a filter object that is
compatible with the generatehdl command in the script. Then you can execute the
script as a function, passing in the filter object, to generate HDL code.

Note:

 Capturing Code Generation Settings

2-17

• Generate MATLAB code is available only in the GUI. The function generatehdl
does not have an equivalent property.

More About
• “Generating HDL Code” on page 2-14

2 HDL Filter Code Generation Fundamentals

2-18

Closing Code Generation Session

The filter object in the workspace does not save the code generation settings. To preserve
your coder settings, the best practice is to select the Generate MATLAB code option,
as described in “Capturing Code Generation Settings” on page 2-16.

Click the Close button to close the Generate HDL dialog box and end a session with the
coder.

More About
• “Starting Filter Design HDL Coder” on page 2-2
• “Generating HDL Code from the GUI” on page 2-14

3

HDL Code for Supported Filter
Structures

• “Generate HDL from Filter System Objects” on page 3-2
• “Multirate Filters” on page 3-4
• “Variable Rate CIC Filters” on page 3-10
• “Cascade Filters” on page 3-13
• “Polyphase Sample Rate Converters” on page 3-16
• “Multirate Farrow Sample Rate Converters” on page 3-19
• “Single-Rate Farrow Filters” on page 3-23
• “Programmable Filter Coefficients for FIR Filters” on page 3-30
• “Programmable Filter Coefficients for IIR Filters” on page 3-40
• “DUC and DDC System Objects” on page 3-47

3 HDL Code for Supported Filter Structures

3-2

Generate HDL from Filter System Objects

You can generate HDL code from the following System objects:

Single Rate Filters

• dsp.FIRFilter
• dsp.BiquadFilter
• dsp.HighpassFilter
• dsp.LowpassFilter
• dsp.FilterCascade

Multirate Filters

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FarrowRateConverter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FilterCascade

After you design a filter System object, use generatehdl or fdhdltool to set HDL
code generation options and generate code. When you input a System object into
either function, you must also specify the input data type for the object. The HDL code
generation tool quantizes the input signal to this data type. The data type argument is
an object of numerictype class. Create this object by calling numerictype(s,w,f),
where s is 1 for signed and 0 for unsigned, w is the word length in bits, and f is the
number of fractional bits.

For instance, if Hd is a dsp.BiquadFilter object, as in the “HDL Butterworth Filter”
example, call generatehdl to generate HDL code for the filter.

generatehdl(Hd,'Name','hdlbutter',...

 'TargetLanguage','VHDL',...

 Generate HDL from Filter System Objects

3-3

 'TargetDirectory',workingdir,...

 'GenerateHDLTestbench','on',...

 'TestBenchUserStimulus',userstim,...

 'InputDataType',numerictype(1,8,7));

The call to numerictype(1,8,7) specifies a signed 8-bit number with 7 fractional bits.

Alternatively, call fdhdltool to open a GUI which enables you to set code generation
options and generate HDL code.

fdhdltool(Hd,numerictype(1,8,7));

You can also create a filter System object and generate HDL code from it, by calling
filterbuilder and then setting these options.

• On the Main tab, select Use a System object to implement filter.
• On the Data Types tab, set Arithmetic to Fixed point and select the internal

fixed-point data types.
• On the Code Generation tab, click Generate HDL to set HDL code generation

options and generate code.

Functions for exploring filter architectures, and generating test bench stimulus also
take an input data type argument when you call them with a System object. See
hdlfilterserialinfo, hdlfilterdainfo, and generatetbstimulus.

See Also
fdhdltool | generatehdl | numerictype

Related Examples
• “HDL Inverse Sinc Filter”
• “HDL Tone Control Filter Bank”
• “HDL Sample Rate Conversion Using Farrow Filters”

3 HDL Code for Supported Filter Structures

3-4

Multirate Filters

Supported Multirate Filter Types

HDL code generation is supported for the following types of multirate filters:

• Cascaded Integrator Comb (CIC) Interpolator (dsp.CICInterpolator)
• Cascaded Integrator Comb (CIC) Decimator (dsp.CICDecimator)
• FIR Polyphase Decimator (dsp.FIRDecimator)
• FIR Polyphase Interpolator (dsp.FIRInterpolator)
• FIR Polyphase Sample Rate Converter (dsp.FIRRateConverter)
• CIC Compensation Interpolator (dsp.CICCompensationInterpolator)
• CIC Compensation Decimator (dsp.CICCompensationDecimator)

Generating Multirate Filter Code

To generate multirate filter code, first select and design one of the supported filter types
using FDATool, filterbuilder, or the MATLAB command line.

After you have created the filter, open the Generate HDL dialog box, set the desired code
generation properties, and generate code. See “Code Generation Options for Multirate
Filters” on page 3-4.

To generate code using the generatehdl function, specify multirate filter code
generation properties that are functionally equivalent to the GUI options. See
“generatehdl Properties for Multirate Filters” on page 3-8.

Code Generation Options for Multirate Filters

When a multirate filter of a supported type (see “Supported Multirate Filter Types” on
page 3-4) is designed, the enabled/disabled state of several options in the Generate
HDL dialog box changes.

• On the Global settings tab, the Clock inputs pull-down menu is enabled. This
menu provides two alternatives for generating clock inputs for multirate filters.

Note: The Clock inputs menu is not supported for:

 Multirate Filters

3-5

• Filters with a Partly serial architecture

• Multistage sample rate converters: dsp.FIRRateConverter, or
dsp.FilterCascade containing multiple rates

• For CIC filters, on the Filter Architecture tab, the Coefficient multipliers option
is disabled. Coefficient multipliers are not used in CIC filters.

• For CIC filters, on the Filter Architecture tab, the FIR adder style option is
disabled, since CIC filters do not require a final adder.

The following figure shows the default settings of the Generate HDL dialog box options
for a supported CIC filter.

3 HDL Code for Supported Filter Structures

3-6

The Clock inputs options are:

• Single: When you select Single, the coder generates a single clock input for a
multirate filter. The module or entity declaration for the filter has a single clock
input with an associated clock enable input, and a clock enable output. The generated
code includes a counter that controls the timing of data transfers to the filter output
(for decimation filters) or input (for interpolation filters). The counter behaves as a
secondary clock whose rate is determined by the decimation or interpolation factor.
This option provides a self-contained clocking solution for FPGA designs.

To customize the name of the clock enable output, see “Setting the Clock Enable
Output Name” on page 3-8. Interpolators also pass through the clock enable
input signal to an output port named ce_in. This signal indicates when the object
accepted an input sample. You can use this signal to control the upstream data flow.
You cannot customize this port name.

The following code excerpts were generated from a CIC decimation filter having a
decimation factor of 4, with Clock inputs set to Single.

The coder generates an input clock, input clock enable, and an output clock enable.
ENTITY cic_decim_4_1_single IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 filter_out : OUT std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 ce_out : OUT std_logic

);

END cic_decim_4_1_single;

The clock enable output process, ce_output, maintains the signal counter. Every
4th clock cycle, counter toggles to 1.
ce_output : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 cur_count <= to_unsigned(0, 4);

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 IF cur_count = 3 THEN

 cur_count <= to_unsigned(0, 4);

 ELSE

 cur_count <= cur_count + 1;

 END IF;

 END IF;

 END IF;

 END PROCESS ce_output;

 counter <= '1' WHEN cur_count = 1 AND clk_enable = '1' ELSE '0';

 Multirate Filters

3-7

The following code excerpt illustrates a typical use of the counter signal, in this case
to time the filter output.
output_reg_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 output_register <= (OTHERS => '0');

 ELSIF clk'event AND clk = '1' THEN

 IF counter = '1' THEN

 output_register <= section_out4;

 END IF;

 END IF;

 END PROCESS output_reg_process;

• Multiple: When you select Multiple, the coder generates multiple clock inputs for
a multirate filter. The module or entity declaration for the filter has separate clock
inputs (each with an associated clock enable input) for each rate of a multirate filter.
You are responsible for providing input clock signals that correspond to the desired
decimation or interpolation factor. To see an example, generate test bench code for
your multirate filter and examine the clk_gen processes for each clock.

The Multiple option is intended for ASICs and FPGAs. It provides more flexibility
than the Single option, but assumes that you provide higher-level HDL code to drive
the input clocks of your filter.

Synchronizers between multiple clock domains are not provided.

When you select Multiple, the coder does not generate clock enable outputs;
therefore the Clock enable output port field of the Global Settings pane is
disabled.

The followingENTITY declaration was generated from a CIC decimation filter with
Clock inputs set to Multiple.
ENTITY cic_decim_4_1_multi IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 clk1 : IN std_logic;

 clk_enable1 : IN std_logic;

 reset1 : IN std_logic;

 filter_out : OUT std_logic_vector(15 DOWNTO 0) -- sfix16_En15

);

END cic_decim_4_1_multi;

3 HDL Code for Supported Filter Structures

3-8

Setting the Clock Enable Output Name

The coder generates a clock enable output when you set Clock inputs to Single in the
Generate HDL dialog box. The default name for the clock enable output is ce_out.

To change the name of the clock enable output, modify the Clock enable output port
field of the Ports pane of the Generate HDL dialog box.

The coder enables the Clock enable output port field only when generating code for a
multirate filter with a single input clock.

generatehdl Properties for Multirate Filters

If you are using generatehdl to generate code for a multirate filter, you can set the
following properties to specify clock generation options:

• ClockInputs: Corresponds to the Clock inputs option; selects generation of single or
multiple clock inputs for multirate filters.

• ClockEnableOutputPort: Corresponds to the Clock enable output port field;
specifies the name of the clock enable output port.

 Multirate Filters

3-9

• ClockEnableInputPort corresponds to the Clock enable input port field; specifies
the name of the clock enable input port.

3 HDL Code for Supported Filter Structures

3-10

Variable Rate CIC Filters

In this section...

“Supported Variable Rate CIC Filter Types” on page 3-10
“Code Generation Options for Variable Rate CIC Filters” on page 3-10

Supported Variable Rate CIC Filter Types

The coder supports HDL code generation for variable rate CIC filters, including the
following filter types:

• CIC Decimator (dsp.CICDecimator)
• CIC Interpolator (dsp.CICInterpolator)
• Multirate cascade with one CIC stage (dsp.FilterCascade)

Code Generation Options for Variable Rate CIC Filters

A variable rate CIC filter has a programmable rate change factor. The coder assumes
that the filter is designed with the maximum rate expected, and that the Decimation
Factor (for CIC Decimators) or Interpolation Factor (for CIC Interpolators) is set to this
maximum ratio.

Two properties support variable rate CIC filters:

• AddRatePort: When AddRatePort is set 'on', the coder generates rate and
load_rate ports. When the load_rate signal is asserted, the rate port loads in a
rate factor. You can only add rate ports to a full-precision filter.

• TestBenchStimulus: Specifies the rate stimulus. If you do not specify
TestbenchRateStimulus, the coder uses the maximum rate change factor specified
in the filter object.

You can also specify these properties in the GUI using the Add rate port check box and
the Testbench rate stimulus edit box.

 Variable Rate CIC Filters

3-11

3 HDL Code for Supported Filter Structures

3-12

 Cascade Filters

3-13

Cascade Filters

In this section...

“Supported Cascade Filter Types” on page 3-13
“Generating Cascade Filter Code” on page 3-13
“Limitations for Code Generation with Cascade Filters” on page 3-14

Supported Cascade Filter Types

The coder supports code generation for a multirate cascade of filter objects
(dsp.FilterCascade).

Generating Cascade Filter Code

Instantiate the filter stages and cascade them in the MATLAB workspace.

hm1 = dsp.FIRDecimator('DecimationFactor',12);

hm2 = dsp.FIRDecimator('DecimationFactor',4);

my_cascade = dsp.FilterCascade(hm1,hm2);

For usage details, see dsp.FilterCascade in the DSP System Toolbox documentation.

The coder currently imposes certain limitations on the filter types allowed in a cascade
filter. See “Limitations for Code Generation with Cascade Filters” on page 3-14 before
creating your filter stages and cascade filter object.

Generating Cascade Filter Code with the fdhdltool Function

Call fdhdltool to open the Generate HDL dialog box, passing in the cascade filter
System object and the fixed-point input data type.

fdhdltool(my_cascade,numerictype(1,16,15))

Set the desired code generation properties and click the Generate button to generate
code.

Generating Cascade Filter Code with the generatehdl Function

Call generatehdl to generate HDL code for your filter, passing in the cascade filter
System object, the fixed-point input data type, and code generation properties as desired.

3 HDL Code for Supported Filter Structures

3-14

generatehdl(my_cascade,'InputDataType',numerictype(1,16,15),'Name','MyFilter',...

 'TargetLanguage','Verilog','GenerateHDLTestbench','on')

Limitations for Code Generation with Cascade Filters

The following rules and limitations apply to cascade filters when used for code
generation:

• You can generate code for cascades that combine the following filter types:

• Decimators and/or single-rate filter structures
• Interpolators and/or single-rate filter structures

Code generation for cascades that include both decimators and interpolators is not
supported. If unsupported filter structures or combinations of filter structures are
included in the cascade, code generation returns an error.

• For code generation, only a flat (single-level) cascade structure is allowed. Nesting of
cascade filters is disallowed.

• By default, generated HDL code excludes the input and output registers from the
stages of the cascade, except for:

• The input of the first stage and the output of the final stage.
• The input registers of interpolator stages.

To generate output registers for each stage, select the Add pipeline registers option
in the Generate HDL dialog box. When using this option, internal pipeline registers
might also be added, depending on the filter structures.

• When a cascade filter is passed to fdhdltool, the FIR adder style option is
disabled. If you require tree adders for FIR filters in a cascade, select the Add
pipeline registers option (since pipelines require tree style FIR adders).

• The coder generates separate HDL code files for each stage of the cascade, in
addition to the top-level code for the cascade filter itself. The filter stage code files are
identified by appending the string _stage1, _stage2, ... _stageN to the filter name.

The figure shows the default settings of the Generate HDL dialog box options for a
cascade filter design.

 Cascade Filters

3-15

3 HDL Code for Supported Filter Structures

3-16

Polyphase Sample Rate Converters

In this section...

“Code Generation for Polyphase Sample Rate Converter” on page 3-16
“HDL Implementation for Polyphase Sample Rate Converter” on page 3-16

Code Generation for Polyphase Sample Rate Converter

The coder supports HDL code generation for direct-form FIR polyphase sample rate
converters. dsp.FIRRateConverter is a multirate filter structure that combines an
interpolation factor and a decimation factor. This combination enables you to perform
fractional interpolation or decimation on an input signal.

The interpolation factor (l) and decimation factor (m) for a polyphase sample
rate converter are specified as integers in the InterpolationFactor and
DecimationFactor properties of a dsp.FIRRateConverter System object. This code
constructs an object with a resampling ratio of 5/3:

frac_cvrter = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)

Fractional rate resampling can be visualized as a two-step process: interpolation by the
factor l, followed by decimation by the factor m. For a resampling ratio of 5/3, the object
raises the sample rate by a factor of 5 using a five-path polyphase filter. A resampling
switch then reduces the new rate by a factor of 3. This process extracts five output
samples for every three input samples.

For general information on this filter structure, see the dsp.FIRRateConverter reference
page in the DSP System Toolbox documentation.

HDL Implementation for Polyphase Sample Rate Converter

Signal Flow, Latency, and Timing

The signal flow for the dsp.FIRRateConverter filter is similar to the polyphase FIR
interpolator (dsp.FIRInterpolator). The delay line is advanced to deliver each input
after the required set of polyphase coefficients are processed.

The diagram illustrates the timing of the HDL implementation for
dsp.FIRRateConverter. A clock enable input (ce_in) indicates valid input samples.

 Polyphase Sample Rate Converters

3-17

The output data, and a clock enable output (ce_out), are produced and delivered
simultaneously, which results in a nonperiodic output.

Clock Rate

The clock rate required to process the hardware logic is related to the input rate as:

ceil(InterpolationFactor/DecimationFactor)

For a resampling ratio of 5/3, the clock rate is ceil(5/3) = 2, or twice the input
sample rate. The inputs are delivered at every other clock cycle. The outputs are
delivered as they are produced and therefore are nonperiodic.

Note: When the generated code or hardware logic is deployed, the outputs must be taken
into a FIFO designed with outputs occurring at the desired sampling rate.

Clock Enable Ports

The HDL entity or module generated from the dsp.FIRRateConverter filter has one
input and two output clock enable ports:

• Clock enable outputs: The default clock enable output port name is ce_out. This
signal indicates when the output data sample is valid. As with other multirate filters,
you can use the Clock enable output port field on the Global Settings > Ports
tab of the Generate HDL dialog box to specify the port name. Alternatively, you can
use the ClockEnableOutputPort property to set the port name in the generatehdl
command.

3 HDL Code for Supported Filter Structures

3-18

The filter also passes through the clock enable input to an output port named ce_in.
This signal indicates when the object accepted an input sample. You can use this
signal to control the upstream data flow. You cannot customize this port name.

• Clock enable input: The default clock enable input port name is clk_enable. This
signal indicates when the input data sample is valid. You can use the Clock enable
input port field on the Global Settings tab of the Generate HDL dialog box to
specify the port name. Alternatively, you can use the ClockEnableInputPort property
to set the port name in the generatehdl command.

Test Bench Generation

Generated test benches apply the test vectors at the correct rate, then observe and verify
the output as it is available. The test benches control the data flow using the input and
output clock enables.

Code Generation

The following example constructs a fixed-point dsp.FIRRateConverter object with
a resampling ratio of 5/3, and generates VHDL filter code. When you generate HDL
code for a System object, specify the input fixed-point data type. The object determines
internal data types based on the input type and property settings.
frac_cvrter = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)

generatehdl(frac_cvrter,'InputDataType',numerictype(1,16,15))

Starting VHDL code generation process for filter: filter

Generating: H:\hdlsrc\filter.vhd

Starting generation of filter VHDL entity

Starting generation of filter VHDL architecture

Successful completion of VHDL code generation process for filter: filter

HDL latency is 2 samples

The following code generation options are not supported for dsp.FIRRateConverter
filters:

• Use of pipeline registers (AddPipelineRegisters)
• Distributed Arithmetic architecture (DARadix and (DALUTPartition))
• Fully or partially serial architectures (SerialPartition and ReuseAccum)
• Multiple clock inputs (ClockInputs)

 Multirate Farrow Sample Rate Converters

3-19

Multirate Farrow Sample Rate Converters

In this section...

“Code Generation for Multirate Farrow Sample Rate Converters” on page 3-19
“Generating Code for dsp.FarrowRateConverter Filters at the Command Line” on page
3-19
“Generating Code for dsp.FarrowRateConverter Filters in the GUI” on page 3-20

Code Generation for Multirate Farrow Sample Rate Converters

The coder supports code generation for multirate Farrow sample rate converters
(dsp.FarrowRateConverter). dsp.FarrowRateConverter is a multirate filter
structure that implements a sample rate converter with an arbitrary conversion factor
determined by its interpolation and decimation factors.

Unlike a single-rate Farrow filter (see “Single-Rate Farrow Filters” on page 3-23),
a multirate Farrow sample rate converter does not have a fractional delay input. For
general information on this filter structure, see the dsp.FarrowRateConverter reference
page in the DSP System Toolbox documentation.

Generating Code for dsp.FarrowRateConverter Filters at the Command
Line

You can generate HDL code for either a standalone dsp.FarrowRateConverter object,
or a cascade that includes a dsp.FarrowRateConverter object. This section provides
simple examples for each case.

The following example instantiates a standalone fixed-point Farrow sample rate
converter. The object converts between two standard audio rates, from 44.1 kHz to 48
kHz. The example generates both VHDL code and a VHDL test bench.
Hm = dsp.FarrowRateConverter(48,44.1);

generatehdl(Hm,'InputDataType',numerictype(1,16,15),...

 'GenerateHDLTestbench','on')

The following example generates HDL code for a cascade that includes
a dsp.FarrowRateConverter filter. The coder requires that the
dsp.FarrowRateConverter filter is in the last position of the cascade.

3 HDL Code for Supported Filter Structures

3-20

First, interpolate the original 8-kHz signal by four, using a cascade of FIR halfband
filters.
Astop = 50; % Minimum stopband attenuation

TW = .125; % Transition Width

f2 = fdesign.interpolator(4,'Nyquist',4,'TW,Ast',TW,Astop);

hfir = design(f2,'multistage','HalfbandDesignMethod','equiripple','Systemobject',true);

Then, interpolate the intermediate 32-kHz signal to get the designer 44.1-kHz sampling
frequency. The dsp.FarrowRateConverter System object calculates a piecewise
polynomial fit using Lagrange interpolation coefficients.

N = 3; % Polynomial Order

hfar = dsp.FarrowRateConverter(32,44.1,'PolynomialOrder',N)

Obtain the overall filter by cascading the FIR phases with the Farrow stage. The
dsp.FarrowRateConverter filter is at the end of the cascade.

interp_cascade.addStage(hfar);

generatehdl(interp_cascade,'InputDataType',numerictype(1,16,15),...

 'GenerateHDLTestbench','on');

Generating Code for dsp.FarrowRateConverter Filters in the GUI

fdatool and filterbuilder do not currently support dsp.FarrowRateConverter
filters. To generate code for a dsp.FarrowRateConverter filter in the HDL code
generation GUI, use the fdhdltool command, as in the following example:

m = dsp.FarrowRateConverter(48,44.1);

fdhdltool(m,numerictype(1,16,15));

fdhdltool opens the Generate HDL dialog box for the dsp.FarrowRateConverter
filter, as shown in the following figure.

 Multirate Farrow Sample Rate Converters

3-21

The following code generation options are not supported for
dsp.FarrowRateConverter filters and are disabled in the GUI:

• Use of pipeline registers (AddPipelineRegisters)
• Distributed Arithmetic architecture (DARadix and (DALUTPartition))
• Fully or partially serial architectures (SerialPartition and ReuseAccum)
• Multiple clock inputs (ClockInputs)

See Also
fdhdltool | generatehdl

3 HDL Code for Supported Filter Structures

3-22

More About
• “Single-Rate Farrow Filters” on page 3-23
• “Multirate Filters” on page 3-4

 Single-Rate Farrow Filters

3-23

Single-Rate Farrow Filters

In this section...

“About Code Generation for Single-Rate Farrow Filters” on page 3-23
“Code Generation Properties for Farrow Filters” on page 3-23
“GUI Options for Farrow Filters” on page 3-25
“Farrow Filter Code Generation Mechanics” on page 3-27

About Code Generation for Single-Rate Farrow Filters

The coder supports HDL code generation for these single-rate Farrow filter structures:

• dfilt.farrowlinearfd

• dfilt.farrowfd

A Farrow filter differs from a conventional filter because it has a fractional delay input
in addition to a signal input. The fractional delay input enables the use of time-varying
delays, as the filter operates. The fractional delay input receives a signal taking on
values from 0 through 1.0. For general information how to construct and use Farrow
filter objects, see the DSP System Toolbox documentation.

The coder provides generatehdl properties and equivalent GUI options that let you:

• Define the fractional delay port name used in generated code.
• Apply various test bench stimulus signals to the fractional delay port, or define your

own stimulus signal.

Code Generation Properties for Farrow Filters

The following properties support Farrow filter code generation:

• FracDelayPort (string). This property specifies the name of the fractional delay port
in generated code. The default name is 'filter_fd'. In the following example, the
name 'FractionalDelay' is assigned to the fractional delay port.
D = .3;

3 HDL Code for Supported Filter Structures

3-24

hd = dfilt.farrowfd(D);

generatehdl(hd,'FracDelayPort','FractionalDelay');

• TestBenchFracDelayStimulus (string). This property specifies a stimulus signal
applied to the fractional delay port in test bench code.

By default, a constant value is obtained from the FracDelay property of the Farrow
filter object, and applied to the fractional delay port. To use the default, leave the
TestBenchFracDelayStimulus property unspecified, or pass in the empty string
(''). In the following example, the FracDelay property is set to 0.6, and this value is
used (by default) as the fractional delay stimulus.

D = .3;

hd = dfilt.farrowfd(D);

hd.Fracdelay = 0.6;

generatehdl(hd,'GenerateHDLTestbench','on');

Alternatively, you can specify generation of the following types of stimulus vectors:

• 'RandSweep': A vector of random values between 0 and 1. This stimulus signal
has the same duration as the input to the filter, but changes at a slower rate. Each
fractional delay value obtained from the vector is held for 10% of the total duration
of the input signal.

• 'RampSweep': A vector of values incrementally increasing over the range from
0 to 1. This stimulus signal has the same duration as the input to the filter, but
changes at a slower rate. Each fractional delay value obtained from the vector is
held for 10% of the total duration of the input signal.

• A user-defined stimulus vector. You can pass in a call to a function that returns a
vector. Alternatively, create the vector in the workspace and pass it in as shown in
the following code example:

D = .3;

hd = dfilt.farrowfd(D);

inputdata = generatetbstimulus(hd, 'TestBenchStimulus', {'ramp'});

mytestv = [0.5*ones(1, length(inputdata)/2), 0.2*ones(1, length(inputdata)/2)];

generatehdl(hd,'GenerateHDLTestbench','on','TestBenchStimulus',{'noise'},...

'TestbenchFracDelayStimulus',mytestv);

Note: A user-defined fractional delay stimulus signal must have the same length
as the test bench input signal. If the two signals do not have equal length, test
bench generation terminates with an error message. The error message displays
the signal lengths, as shown in the following example:
D = .3;

hd = dfilt.farrowfd(D);

inputdata = generatetbstimulus(hd, 'TestBenchStimulus', {'ramp'});

 Single-Rate Farrow Filters

3-25

mytestv = [0.5*ones(1, length(inputdata)/2), 0.2*ones(1, length(inputdata)/2)];

generatehdl(hd,'GenerateHDLTestbench','on','TestBenchStimulus',{'noise' 'chirp'},...

'TestbenchFracDelayStimulus',mytestv)

??? Error using ==> generatevhdltb

The lengths of specified vectors for FracDelay (1026) and Input (2052) do not match.

GUI Options for Farrow Filters

This section describes Farrow filter code generation options that are available in the
Filter Design HDL Coder GUI. These options correspond to the properties described in
“Code Generation Properties for Farrow Filters” on page 3-23.

Note: The Farrow filter options are displayed only when a Farrow filter is selected for
HDL code generation.

The Farrow filter options are:

• The Fractional delay port field in the Ports pane of the Generate HDL dialog box
(shown) specifies the name of the fractional delay port in generated code. The default
name is filter_fd.

3 HDL Code for Supported Filter Structures

3-26

• The Fractional delay stimulus pop-up list in the Test Bench pane of the Generate
HDL dialog box (shown) lets you select a stimulus signal. This signal is applied to the
fractional delay port in the generated test bench.

The Fractional delay stimulus list lets you select generation of the following types
of stimulus signals:

• Get value from filter: (default). A constant value is obtained from the
FracDelay property of the Farrow filter object, and applied to the fractional delay
port.

• Ramp sweep. A vector of values incrementally increasing over the range from
0 to 1. This stimulus signal has the same duration as the input to the filter, but
changes at a slower rate. Each fractional delay value obtained from the vector is
held for 10% of the total duration of the input signal.

• Random sweep. A vector of random values between 0 and 1. This stimulus signal
has the same duration as the input to the filter, but changes at a slower rate. Each
fractional delay value obtained from the vector is held for 10% of the total duration
of the input signal.

 Single-Rate Farrow Filters

3-27

• User defined. When you select this option, the User defined stimulus field
is enabled. You can enter a call to a function that returns a vector in the User
defined stimulus field. Alternatively, create the vector as a workspace variable
and enter the variable name, as shown in the following figure.

Farrow Filter Code Generation Mechanics

FDATool does not support design or import of Farrow filters. To generate HDL code for a
Farrow filter, use one of the following methods:

• Use the MATLAB command line to create a Farrow filter object, initiate code
generation, and set Farrow-related properties, as in the examples shown in “Code
Generation Properties for Farrow Filters” on page 3-23.

• Use the MATLAB command line to create a Farrow filter object. Then open the
Generate HDL dialog box. For example, these commands create a Farrow linear
fractional delay filter object Hd and pass it in to fdhdltool:

D = .3

Hd = dfilt.farrowlinearfd(D)

Hd.arithmetic = 'fixed'

3 HDL Code for Supported Filter Structures

3-28

fdhdltool(Hd)

• Use filterbuilder to design a Farrow (fractional delay) filter object. Then, select
the Code Generation pane of the filterbuilder dialog box (shown). To open the
Generate HDL dialog box, click the Generate HDL button. Then you can specify code
generation options, and generate code.

Options Disabled for Farrow Filters

The coder disables some options or sets them to fixed default value when the Generate
HDL dialog box opens with a Farrow filter. The options affected are:

 Single-Rate Farrow Filters

3-29

Architecture. The coder sets this option to its default (Fully parallel) and disables
it.

Clock inputs. The coder sets this option to its default (Single) and disables it.

3 HDL Code for Supported Filter Structures

3-30

Programmable Filter Coefficients for FIR Filters

By default, the coder obtains filter coefficients from a filter object and hard-codes them
into the generated code. An HDL filter realization generated in this way cannot be used
with a different set of coefficients.

For direct-form FIR filters, the coder provides GUI options and corresponding command-
line properties that let you:

• Generate an interface for loading coefficients from memory. Coefficients stored in
memory are called programmable coefficients.

• Test the interface.

Programmable filter coefficients are supported for the following direct-form FIR filter
types:

• Direct form
• Direct form symmetric
• Direct form antisymmetric

To use programmable coefficients, a port interface (referred to as a processor interface)
is generated for the filter entity or module. Coefficient loading is assumed to be under
the control of a microprocessor that is external to the generated filter. The filter uses the
loaded coefficients for processing input samples.

Programmable filter coefficients are supported for the following filter architectures:

• Fully parallel

• Fully serial

• Partly serial

• Cascade serial

When you choose a serial FIR filter architecture, you can also specify how the coefficients
are stored. You can select a dual-port or single-port RAM, or a register file. See
“Programmable Filter Coefficients for FIR Filters” on page 3-30.

You can also generate a processor interface for loading IIR filter coefficients. See
“Programmable Filter Coefficients for IIR Filters” on page 3-40.

 Programmable Filter Coefficients for FIR Filters

3-31

In this section...

“GUI Options for Programmable Coefficients” on page 3-31
“Generating a Test Bench for Programmable FIR Coefficients” on page 3-33
“Using Programmable Coefficients with Serial FIR Filter Architectures” on page
3-34

GUI Options for Programmable Coefficients

The following GUI options let you specify programmable coefficients:

• The Coefficient source list on the Generate HDL dialog box lets you select whether
coefficients are obtained from the filter object and hard-coded (Internal), or from
memory (Processor interface). The default is Internal.

The corresponding command-line property is CoefficientSource.

3 HDL Code for Supported Filter Structures

3-32

• The Coefficient stimulus option on the Test Bench pane of the Generate HDL
dialog box specifies how the test bench tests the generated memory interface.

The corresponding command-line property is TestBenchCoeffStimulus.

 Programmable Filter Coefficients for FIR Filters

3-33

Generating a Test Bench for Programmable FIR Coefficients

This section describes how to use the TestBenchCoeffStimulus property to specify how
the test bench drives the coefficient ports. You can also use the Coefficient stimulus
option for this purpose.

When a coefficient memory interface has been generated for a filter, the coefficient ports
have associated test vectors. The TestbenchCoeffStimulus property determines how
the test bench drives the coefficient ports.

The TestBenchStimulus property determines the filter input stimuli.

3 HDL Code for Supported Filter Structures

3-34

The TestbenchCoeffStimulus property selects from two types of test benches.
TestbenchCoeffStimulus takes a vector argument. The valid values are:

• []: Empty vector. (default)

When the value of TestbenchCoeffStimulus is an empty vector, the test bench
loads the coefficients from the filter object, and then forces the input stimuli. This
test verifies that the interface writes one set of coefficients into the memory without
encountering an error.

• [coeff1,coeff2,...coeffN]: Vector of N coefficients, where N is determined as follows:

• For symmetric filters, N must equal ceil(length(filterObj.Numerator)/2).
• For symmetric filters, N must equal

floor(length(filterObj.Numerator)/2).
• For other filters, N must equal the length of the filter object.

In this case, the filter processes the input stimuli twice. First, the test bench
loads the coefficients from the filter object and forces the input stimuli to
show the response. Then, the filter loads the set of coefficients specified in the
TestbenchCoeffStimulus vector, and shows the response by processing the same
input stimuli for a second time. In this case, the internal states of the filter, as set
by the first run of the input stimulus, are retained. The test bench verifies that the
interface writes two different sets of coefficients into the coefficient memory. The test
bench also provides an example of how the memory interface can be used to program
the filter with different sets of coefficients.

Note: If a coefficient memory interface has not been previously generated for the filter,
the TestbenchCoeffStimulus property is ignored.

For an example, see “Test Bench for FIR Filter with Programmable Coefficients” on page
9-13.

Using Programmable Coefficients with Serial FIR Filter Architectures

This section discusses special considerations for using programmable filter coefficients
with FIR filters that have one of the following serial architectures:

• Fully serial

 Programmable Filter Coefficients for FIR Filters

3-35

• Partly serial

• Cascade serial

Specifying Memory for Programmable Coefficients

By default, the processor interface for programmable coefficients loads the coefficients
from a register file. The Coefficient memory pull-down menu lets you specify
alternative RAM-based storage for programmable coefficients.

You can set Coefficient memory when:

• The filter is a FIR filter.
• You set Coefficient source to Processor interface.
• You set Architecture to Fully serial, Partly serial, or Cascade serial.

The figure shows the Coefficient memory option for a fully serial FIR filter. You can
select an option using the drop-down list.

3 HDL Code for Supported Filter Structures

3-36

The table summarizes the Coefficient memory options.

Coefficient memory Selection Description

Registers default: Store programmable coefficients in a register
file.

Single Port RAMs Store programmable coefficients in single-port RAM.

 Programmable Filter Coefficients for FIR Filters

3-37

Coefficient memory Selection Description

The coder writes each RAM and its interface to a
separate file. The number of generated RAMs depends
on the filter partitioning.

Dual Port RAMs Store programmable coefficients in dual-port RAM.

The coder writes each RAM and its interface to a
separate file. The number of generated RAMs depends
on the filter partitioning.

Timing Considerations

In a serial implementation of a FIR filter, the rate of the system clock (clk) is generally
a multiple of the input data rate (the sample rate of the filter). The exact relationship
between the clock rate and the data rate depends on your choice of serial architecture
and partitioning options.

Programmable coefficients load into the coeffs_in port at either the system clock rate
(faster) or the input data (slower) rate. If your design requires loading of coefficients at
the faster rate, observe the following points:

• When write_enable asserts, coefficients load from thecoeffs_in port into
coefficient memory at the address specified by write_address.

• write_done can assert for anynumber of clock cycles. If write_done asserts at least
two clk cycles before the arrival of the next data input value, new coefficients will be
applied with the next data sample. Otherwise, new coefficients will be applied for the
data after the next sample.

These two examples illustrate how serial partitioning affects the timing of coefficient
loading.

Create a filter, Hd, that is an asymmetric filter with 11 coefficients.
 rng(13893,'v5uniform')

 b = rand(1,23)

 Hd = dfilt.dfasymfir(b)

 Hd.Arithmetic = 'fixed'

Generate VHDL code for Hd, using a partly serial architecture with the serial partition
[7 4]. Set CoefficientSource to generate a processor interface, with the default
CoefficientStimulus.

3 HDL Code for Supported Filter Structures

3-38

generatehdl(Hd,'SerialPartition',[7 4],'CoefficientSource','ProcessorInterface')

Clock rate is 7 times the input sample rate for this architecture.

HDL latency is 2 samples

This partitioning results in a clock rate that is seven times the input sample rate.

The timing diagram illustrates the rate of coefficient loading relative to the rate of input
data samples. While write_enable is asserted, 11 coefficient values are loaded, via
coeffs_in, to 11 sequential memory addresses. On the next clk cycle, write_enable
is deasserted and write_done is asserted for one clock period. The coefficient loading
operation is completed within two cycles of data input, allowing 2 clk cycles to elapse
before the arrival of the data value 07FFF. Therefore the newly loaded coefficients are
applied to that data sample.

Now define a serial partition of [6 5] for the same filter. This partition results in a
slower clock rate, six times the input sample rate.
 generatehdl(Hd,'SerialPartition',[6 5],'CoefficientSource','ProcessorInterface')

Clock rate is 6 times the input sample rate for this architecture.

HDL latency is 2 samples

The timing diagram illustrates that write_done deasserts too late for the coefficients to
be applied to the arriving data value 278E. They are applied instead to the next sample,
7FFF.

 Programmable Filter Coefficients for FIR Filters

3-39

3 HDL Code for Supported Filter Structures

3-40

Programmable Filter Coefficients for IIR Filters

By default, the coder obtains filter coefficients from a filter object and hard-codes them
into the generated code. An HDL filter realization generated in this way cannot be used
with a different set of coefficients.

For IIR filters, the coder provides GUI options and corresponding command-line
properties that let you:

• Generate an interface for loading coefficients from memory. Coefficients stored in
memory are called programmable coefficients.

• Test the interface.

To use programmable coefficients, a port interface (referred to as a processor interface)
is generated for the filter entity or module. Coefficient loading is assumed to be under
the control of a microprocessor that is external to the generated filter. The filter uses the
loaded coefficients for processing input samples.

The following IIR filter types support programmable filter coefficients:

• Second-order section (SOS) infinite impulse response (IIR) Direct Form I
• SOS IIR Direct Form I transposed
• SOS IIR Direct Form II
• SOS IIR Direct Form II transposed

Limitations

• Programmable filter coefficients are supported for IIR filters with fully parallel
architectures only.

• The generated interface assumes that the coefficients are stored in a register file.
• When you generate a processor interface for an IIR filter, the OptimizeScaleValues

property must be between 1 and 0. For example:
Hd.OptimizeScaleValues = 0

Check that the filter still has the desired response, using the fvtool and filter,
commands. Disabling Hd.OptimizeScaleValues may add quantization at section
inputs and outputs.

 Programmable Filter Coefficients for IIR Filters

3-41

You can also generate a processor interface for loading FIR filter coefficients.“Specifying
Memory for Programmable Coefficients” on page 3-35 for further information.

Generate a Processor Interface for a Programmable IIR Filter

You can specify a processor interface using the Coefficient source menu on the
Generate HDL dialog box.

• The Coefficient source list on the Generate HDL dialog box lets you select whether
coefficients are obtained from the filter object and hard-coded (Internal), or from
memory (Processor interface). The default is Internal.

The corresponding command-line property is CoefficientSource.

3 HDL Code for Supported Filter Structures

3-42

• The Coefficient stimulus option on the Test Bench pane of the Generate HDL
dialog box specifies how the test bench tests the generated memory interface.

The corresponding command-line property is TestBenchCoeffStimulus.

 Programmable Filter Coefficients for IIR Filters

3-43

Generating a Test Bench for Programmable IIR Coefficients

This section describes how to use the TestBenchCoeffStimulus property to specify how
the test bench drives the coefficient ports. You can also use the Coefficient stimulus
option for this purpose.

When a coefficient memory interface has been generated for a filter, the coefficient ports
have associated test vectors. The TestbenchCoeffStimulus property determines how
the test bench drives the coefficient ports.

The TestBenchStimulus property determines the filter input stimuli.

3 HDL Code for Supported Filter Structures

3-44

The TestbenchCoeffStimulus specified the source of coefficients used for the test
bench. The valid values for TestbenchCoeffStimulus are:

• []: Empty vector. (default)

When the value of TestbenchCoeffStimulus is an empty vector, the test bench
loads the coefficients from the filter object, and then forces the input stimuli. This test
shows the response to the input stimuli and verifies that the interface writes one set
of coefficients into the memory without encountering an error.

• A cell array containing the following elements:

• New_Hd.ScaleValues: column vector of scale values for the IIR filter
• New_Hd.sosMatrix: second-order section (SOS) matrix for the IIR filter

You can specify the elements of the cell array in the following forms:

• {New_Hd.ScaleValues,New_Hd.sosMatrix}

• {New_Hd.ScaleValues;New_Hd.sosMatrix}

• {New_Hd.sosMatrix,New_Hd.ScaleValues}

• {New_Hd.sosMatrix;New_Hd.ScaleValues}

• {New_Hd.ScaleValues}

• {New_Hd.sosMatrix}

In this case, the filter processes the input stimuli twice. First, the test bench
loads the coefficients from the filter object and forces the input stimuli to
show the response. Then, the filter loads the set of coefficients specified in the
TestbenchCoeffStimulus cell array, and shows processes the same input stimuli
again. The internal states of the filter, as set by the first run of the input stimulus,
are retained. The test bench verifies that the interface writes two different sets of
coefficients into the register file. The test bench also provides an example of how the
memory interface can be used to program the filter with different sets of coefficients.

If you omit New_Hd.ScaleValues, the test bench uses the scale values loaded from
the filter object twice. Likewise, if you omit New_Hd.sosMatrix, the test bench uses
the SOS matrix loaded from the filter object twice.

 Programmable Filter Coefficients for IIR Filters

3-45

Addressing Scheme for Loading IIR Coefficients

The following table gives the address generation scheme for the write_address port
when loading IIR coefficients into memory. This addressing scheme allows the different
types of coefficients (scale values, numerator coefficients, and denominator coefficients)
to be loaded via a single port (coeffs_in).

Each type of coefficient has the same word length, but can have different fractional
lengths.

The address for each coefficient is divided into two fields:

• Section address: Width is ceil(log2N) bits, where N is the number of sections.
• Coefficient address: Width is three bits.

The total width of the write_address port is therefore ceil(log2N) + 3bits.

3 HDL Code for Supported Filter Structures

3-46

Section Address Coefficient Address Description

S S ... S 000 Section scale value
S S ... S 001 Numerator coefficient: b1
S S ... S 011 Numerator coefficient: b2
S S ... S 100 Numerator coefficient: b3
S S ... S 101 Denominator coefficient: a2
S S ... S 110 Denominator coefficient: a3 (if order = 2; otherwise

unused)
S S ... S 110 Unused
0 0 ... 0 111 Last scale value

 DUC and DDC System Objects

3-47

DUC and DDC System Objects

You can generate HDL code for Digital Up Converter (DUC) and Digital Down Converter
(DDC) System objects. This capability is limited to code generation at the command line
only.

When calling generatehdl for a System object, you must specify the data type of the
input signal. Set the InputDataType property to a numerictype object.

hDDC = dsp.DigitalDownConverter('Oscillator','NCO')

generatehdl(hDDC,'InputDataType',numerictype(1,8,7))

The software generates a data valid signal at the top DDC or DUC level:

• For DDC, the signal is named ce_out. Filter Design HDL Coder™ software ties that
signal to the corresponding ce_out signal from the decimating filtering cascade.

• For DUC, the signal is named ce_out_valid. The coder software ties that signal to
the corresponding ce_out_valid signal from the interpolating filtering cascade.

Limitations

You cannot set the input and output port names. These ports have the default names
of ddc_in and ddc_out. The coder inserts registers on input and output signals. If you
attempt to turn them off, the coder returns a warning.

You can implement filtering stages in DDC and DUC with the default fully parallel
architecture only. For these objects, the coder software does not support optimization and
architecture-specific properties such as:

• SerialPartition
• DALUTPartition
• DARadix
• AddPipelineRegisters
• MultiplierInputPipeline
• MultiplierOutputPipeline

4

Optimization of HDL Filter Code

• “Speed vs. Area Tradeoffs” on page 4-2
• “Distributed Arithmetic for FIR Filters” on page 4-21
• “Architecture Options for Cascaded Filters” on page 4-30
• “CSD Optimizations for Coefficient Multipliers” on page 4-31
• “Improving Filter Performance with Pipelining” on page 4-32
• “Overall HDL Filter Code Optimization” on page 4-38

4 Optimization of HDL Filter Code

4-2

Speed vs. Area Tradeoffs

In this section...

“Overview of Speed or Area Optimizations” on page 4-2
“Parallel and Serial Architectures” on page 4-3
“Specifying Speed vs. Area Tradeoffs via generatehdl Properties” on page 4-6
“Select Architectures in the Generate HDL Dialog Box” on page 4-9

Overview of Speed or Area Optimizations

The coder provides options that extend your control over speed vs. area tradeoffs in the
realization of filter designs. To achieve the desired tradeoff, you can either specify a
fully parallel architecture for generated HDL filter code, or choose one of several serial
architectures. These architectures are described in “Parallel and Serial Architectures” on
page 4-3.

The following table summarizes the filter types that are available for parallel and serial
architecture choices.

Architecture Available for Filter Types...

Fully parallel (default) Filter types that are supported for HDL code
generation

Fully serial • direct form
• direct form symmetric
• direct form asymmetric
• direct form I SOS
• direct form II SOS

Partly serial • direct form
• direct form symmetric
• direct form asymmetric
• direct form I SOS
• direct form II SOS

 Speed vs. Area Tradeoffs

4-3

Architecture Available for Filter Types...

Cascade serial • direct form
• direct form symmetric
• direct form asymmetric

The coder supports the full range of parallel and serial architecture options via properties
passed in to the generatehdl function, as described in “Specifying Speed vs. Area
Tradeoffs via generatehdl Properties” on page 4-6.

Alternatively, you can use the Architecture pop-up menu on the Generate HDL
dialog box to choose parallel and serial architecture options, as described in “Select
Architectures in the Generate HDL Dialog Box” on page 4-9.

Note: The coder also supports distributed arithmetic (DA), another highly efficient
architecture for realizing filters. See “Distributed Arithmetic for FIR Filters” on page
4-21.

Parallel and Serial Architectures

Fully Parallel Architecture

This option is the default selection. A fully parallel architecture uses a dedicated
multiplier and adder for each filter tap; the taps execute in parallel. This type of
architecture is optimal for speed. However, it requires more multipliers and adders than
a serial architecture, and therefore consumes more chip area.

Serial Architectures

Serial architectures reuse hardware resources in time, saving chip area. The coder
provides a range of serial architecture options. These architectures have a latency of one
clock period (see “Latency in Serial Architectures” on page 4-5).

You can select from these serial architecture options:

• Fully serial: A fully serial architecture conserves area by reusing multiplier and
adder resources sequentially. For example, a four-tap filter design would use a single
multiplier and adder, executing a multiply/accumulate operation once for each tap.
The multiply/accumulate section of the design runs at four times the input/output

4 Optimization of HDL Filter Code

4-4

sample rate. This type of architecture saves area at the cost of some speed loss and
higher power consumption.

In a fully serial architecture, the system clock runs at a much higher rate than
the sample rate of the filter. Thus, for a given filter design, the maximum speed
achievable by a fully serial architecture is less than the maximum speed of a parallel
architecture.

• Partly serial: Partly serial architectures cover the full range of speed vs. area
tradeoffs that lie between fully parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into serial partitions. The
taps within each partition execute serially, but the partitions execute together in
parallel. The outputs of the partitions are summed at the final output.

When you select a partly serial architecture for a filter, you can define the serial
partitioning in the following ways:

• Define the serial partitions directly, as a vector of integers. Each element of the
vector specifies the length of the corresponding partition.

• Specify the desired hardware folding factor ff, an integer greater than 1. Given
the folding factor, the coder computes the serial partition and the number of
multipliers.

• Specify the desired number of multipliers nmults, an integer greater than 1.
Given the number of multipliers, the coder computes the serial partition and the
folding factor.

The Generate HDL dialog box lets you specify a partly serial architecture in terms
of these three parameters. You can then view how a change in one parameter
interacts with the other two. The coder also provides hdlfilterserialinfo, an
informational function that helps you define an optimal serial partition for a filter.

• Cascade-serial: A cascade-serial architecture closely resembles a partly serial
architecture. As in a partly serial architecture, the filter taps are grouped into several
serial partitions that execute together in parallel. However, the accumulated output
of each partition cascades to the accumulator of the previous partition. The output
of the partitions is therefore computed at the accumulator of the first partition. This
technique is termed accumulator reuse. You do not require a final adder, which saves
area.

The cascade-serial architecture requires an extra cycle of the system clock to complete
the final summation to the output. Therefore, the frequency of the system clock must

 Speed vs. Area Tradeoffs

4-5

be increased slightly with respect to the clock used in a noncascade partly serial
architecture.

To generate a cascade-serial architecture, you specify a partly serial architecture
with accumulator reuse enabled. If you do not specify the serial partitions, the coder
automatically selects an optimal partitioning.

Latency in Serial Architectures

Serialization of a filter increases the total latency of the design by one clock cycle. The
serial architectures use an accumulator (an adder with a register) to add the sequential
products. An additional final register is used to store the summed result of each of the
serial partitions. The operation requires an extra clock cycle.

Holding Input Data in a Valid State

Serial architectures implement internal clock rates higher than the input rate. In such
filter implementations, there are N cycles (N >= 2) of the base clock for each input
sample. You can specify how many clock cycles the test bench holds the input data values
in a valid state.

• When you select Hold input data between samples (the default), the test bench
holds the input data values in a valid state for N clock cycles.

• When you clear Hold input data between samples, the test bench holds input data
values in a valid state for only one clock cycle. For the next N-1 cycles, the test bench
drives the data to an unknown state (expressed as 'X') until the next input sample
is clocked in. Forcing the input data to an unknown state verifies that the generated
filter code registers the input data only on the first cycle.

The figure shows the Test Bench pane of the Generate HDL dialog box, with Hold
input data between samples set to its default setting.

4 Optimization of HDL Filter Code

4-6

Use the equivalent HoldInputDataBetweenSamples property when you call the
generatehdl function.

Specifying Speed vs. Area Tradeoffs via generatehdl Properties

By default, generatehdl generates filter code using a fully parallel architecture. If you
want to generate filter code with a fully parallel architecture, you do not have to specify
this architecture explicitly.

Two properties specify serial architecture options to the generatehdl function:

• SerialPartition: This property specifies the serial partitioning of the filter.
• ReuseAccum: This property enables or disables accumulator reuse.

The table summarizes how to set these properties to generate the desired architecture.

 Speed vs. Area Tradeoffs

4-7

To Generate This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Fully parallel Omit this property Omit this property
Fully serial N, where N is the length of the filter Not specified, or 'off'
Partly serial [p1 p2 p3...pN]: a vector of Ninteger elements,

where N is the number of serial partitions. Each
element of the vector specifies the length of the
corresponding partition. The sum of the vector
elements must be equal to the length of the filter.
When you define the partitioning for a partly
serial architecture, consider the following:

• The filter length should be divided as uniformly
as you can into a vector of length equal to the
number of multipliers intended. For example,
if your design requires a filter of length 9 with
2 multipliers, the recommended partition is [5
4]. If your design requires 3 multipliers, the
recommended partition is[3 3 3] rather than
some less uniform division such as [1 4 4] or
[3 4 2].

• If your design is constrained by having to
compute each output value (corresponding to
each input value) in an exact number N of clock
cycles, use N as the largest partition size and
partition the other elements as uniformly as
you can. For example, if the filter length is 9
and your design requires exactly 4 cycles to
compute the output, define the partition as [4
3 2]. This partition executes in 4 clock cycles,
at the cost of 3 multipliers.

You can also specify a serial architecture in
terms of a desired hardware folding factor, or in
terms of the optimal number of multipliers. See
hdlfilterserialinfo for detailed information.

'off'

4 Optimization of HDL Filter Code

4-8

To Generate This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Cascade-serial
with explicitly
specified
partitioning

[p1 p2 p3...pN]: a vector of integers having
N elements, where N is the number of serial
partitions. Each element of the vector specifies
the length of the corresponding partition. The sum
of the vector elements must equal the length of
the filter. The values of the vector elements must
appear in descending order, except that the last
two elements must be equal. For example, for a
filter of length 9, partitions such as[5 4] or [4 3
2] would be legal, but the partitions [3 3 3] or
[3 2 4] raise an error at code generation time.

'on'

Cascade-serial
with automatically
optimized
partitioning

Omit this property 'on'

You can use the helper function hdlfilterserialinfo to explore possible partitions
for your filter.

For an example, see “Compare Serial Architectures for FIR Filter” on page 9-7.

Serial Architectures for IIR SOS Filters

To specify a partly or fully serial architecture for an IIR SOS filter structure (df1sos or
dsp.BiquadFilter), specify either one of the following parameters:

• 'FoldingFactor', ff: Specify the desired hardware folding factor ff, an
integer greater than 1. Given the folding factor, the coder computes the number of
multipliers.

• ‘NumMultipliers’, nmults: Specify the desired number of multipliers nmults,
an integer greater than 1. Given the number of multipliers, the coder computes the
folding factor.

To obtain information about the folding factor options and the corresponding number of
multipliers for a filter, call the hdlfilterserialinfo function.

For an example, see “Serial Architecture for IIR Filter” on page 9-9.

 Speed vs. Area Tradeoffs

4-9

Select Architectures in the Generate HDL Dialog Box

The Architecture pop-up menu, in the Generate HDL dialog box, lets you select parallel
and serial architecture. The following topics describe the GUI options you must set for
each Architecture choice.

Specifying a Fully Parallel Architecture

The default Architecture setting is Fully parallel, as shown.

4 Optimization of HDL Filter Code

4-10

Specifying a Fully Serial Architecture

When you select the Fully serial, Architecture options, the Generate HDL dialog
box displays additional information about the folding factor, number of multipliers, and
serial partitioning. Because these parameters depend on the length of the filter, they
display in a read-only format, as shown in the following figure.

The Generate HDL dialog box also displays a View details link. When you click this
link, the coder displays an HTML report in a separate window. The report displays an
exhaustive table of folding factor, multiplier, and serial partition settings for the current
filter. You can use the table to help you choose optimal settings for your design.

 Speed vs. Area Tradeoffs

4-11

Specify Partitions for a Partly Serial Architecture

When you select the Partly serial Architecture option, the Generate HDL dialog
box displays additional information and data entry fields related to serial partitioning.
(See the following figure.)

The Generate HDL dialog box also displays a View details link. When you click this
link, the coder displays an HTML report in a separate window. The report displays an
exhaustive table of folding factor, multiplier, and serial partition settings for the current
filter. You can use the table to help you choose optimal settings for your design.

4 Optimization of HDL Filter Code

4-12

The Specified by drop-down menu lets you decide how you define the partly serial
architecture. Select one of the following options:

• Folding factor: The drop-down menu to the right of Folding factor contains an
exhaustive list of folding factors for the filter. When you select a value, the display of
the current folding factor, multiplier, and serial partition settings updates.

• Multipliers: The drop-down menu to the right of Multipliers contains an
exhaustive list of value options for the number of multipliers for the filter. When you
select a value, the display of the current folding factor, multiplier, and serial partition
settings updates.

 Speed vs. Area Tradeoffs

4-13

• Serial partition: The drop-down menu to the right of Serial partition
contains an exhaustive list of serial partition options for the filter. When you select a
value, the display of the current folding factor, multiplier, and serial partition settings
updates.

4 Optimization of HDL Filter Code

4-14

Specifying a Cascade Serial Architecture

When you select the Cascade serial Architecture option, the Generate HDL dialog
box displays the Serial partition field, as shown in the following figure.

 Speed vs. Area Tradeoffs

4-15

The Specified by menu lets you define the number and size of the serial partitions
according to different criteria, as described in “Specifying Speed vs. Area Tradeoffs via
generatehdl Properties” on page 4-6.

Specifying Serial Architectures for IIR SOS Filters

To specify a partly or fully serial architecture for an IIR SOS filter structure in the GUI,
you set the following options:

4 Optimization of HDL Filter Code

4-16

• Architecture: Select Fully parallel (the default), Fully serial, or Partly
serial. If you select Partly serial, the GUI displays the Specified by drop-down
menu.

• Specified by: Select one of the following:

• Folding factor: Specify the desired hardware folding factor, ff, an integer
greater than 1. Given the folding factor, the coder computes the number of
multipliers.

• Multipliers: Specify the desired number of multipliers, nmults, an integer
greater than 1. Given the number of multipliers, the coder computes the folding
factor.

Example: Direct Form I SOS Filter

The following example creates a Direct Form I SOS (df1sos) filter design and opens
the GUI. The figure following the code example shows the coder options configured for a
partly serial architecture specified with a Folding factor of 18.

Fs = 48e3 % Sampling frequency

Fc = 10.8e3 % Cut-off frequency

N = 5 % Filter Order

f_lp = fdesign.lowpass('n,f3db',N,Fc,Fs)

Hd = design(f_lp,'butter','FilterStructure','df1sos')

Hd.arithmetic = 'fixed'

fdhdltool(Hd)

 Speed vs. Area Tradeoffs

4-17

Example: Direct Form II SOS Filter

The following example creates a Direct Form II SOS (df2sos) filter design using
filterbuilder.

4 Optimization of HDL Filter Code

4-18

The filter is a lowpass df2sos filter with a filter order of 6. The filter arithmetic is set to
Fixed-point.

On the Code Generation tab, the Generate HDL button activates the Filter Design
HDL Coder GUI. The following figure shows the HDL coder options configured for this
filter, using partly serial architecture with a Folding factor of 9.

 Speed vs. Area Tradeoffs

4-19

Specifying a Distributed Arithmetic Architecture

The Architecture pop-up menu also includes the Distributed arithmetic (DA)
option. See “Distributed Arithmetic for FIR Filters” on page 4-21) for information
about this architecture.

Interactions Between Architecture Options and Other HDL Options

Selecting certain Architecture menu options can change or disable other options.

• When the Fully serial option is selected, the following options are set to their
default values and disabled:

• Coefficient multipliers
• Add pipeline registers
• FIR adder style

4 Optimization of HDL Filter Code

4-20

• When the Partly serial option is selected:

• The Coefficient multipliers option is set to its default value and disabled.
• If the filter is multirate, the Clock inputs option is set to Single and disabled.

• When the Cascade serial option is selected, the following options are set to their
default values and disabled:

• Coefficient multipliers
• Add pipeline registers
• FIR adder style

 Distributed Arithmetic for FIR Filters

4-21

Distributed Arithmetic for FIR Filters

In this section...

“Distributed Arithmetic Overview” on page 4-21
“Requirements and Considerations for Generating Distributed Arithmetic Code” on page
4-23
“Distributed Arithmetic via generatehdl Properties” on page 4-24
“Distributed Arithmetic Options in the Generate HDL Dialog Box” on page 4-25

Distributed Arithmetic Overview

Distributed Arithmetic (DA) is a widely used technique for implementing sum-of-
products computations without the use of multipliers. Designers frequently use DA
to build efficient Multiply-Accumulate Circuitry (MAC) for filters and other DSP
applications.

The main advantage of DA is its high computational efficiency. DA distributes multiply
and accumulate operations across shifters, lookup tables (LUTs), and adders in such a
way that conventional multipliers are not required.

The coder supports DA in HDL code generated for several single-rate and multirate FIR
filter structures for fixed-point filter designs. (See “Requirements and Considerations for
Generating Distributed Arithmetic Code” on page 4-23.)

This section briefly summarizes of the operation of DA. Detailed discussions of the
theoretical foundations of DA appear in the following publications:

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays,
Second Edition, Springer, pp 88–94, 128–143.

• White, S.A., Applications of Distributed Arithmetic to Digital Signal Processing: A
Tutorial Review. IEEE ASSP Magazine, Vol. 6, No. 3.

In a DA realization of a FIR filter structure, a sequence of input data words of width W
is fed through a parallel to serial shift register. This feedthrough produces a serialized
stream of bits. The serialized data is then fed to a bit-wide shift register. This shift
register serves as a delay line, storing the bit serial data samples.

The delay line is tapped (based on the input word size W), to form a W-bit address that
indexes into a lookup table (LUT). The LUT stores the possible sums of partial products

4 Optimization of HDL Filter Code

4-22

over the filter coefficients space. A shift and adder (scaling accumulator) follow the LUT.
This logic sequentially adds the values obtained from the LUT.

A table lookup is performed sequentially for each bit (in order of significance starting
from the LSB). On each clock cycle, the LUT result is added to the accumulated and
shifted result from the previous cycle. For the last bit (MSB), the table lookup result is
subtracted, accounting for the sign of the operand.

This basic form of DA is fully serial, operating on one bit at a time. If the input data
sequence is W bits wide, then a FIR structure takes W clock cycles to compute the output.
Symmetric and asymmetric FIR structures are an exception, requiring W+1 cycles,
because one additional clock cycle is required to process the carry bit of the preadders.

Improving Performance with Parallelism

The inherently bit serial nature of DA can limit throughput. To improve throughput, the
basic DA algorithm can be modified to compute more than one bit-sum at a time. The
number of simultaneously computed bit sums is expressed as a power of two called the
DA radix. For example, a DA radix of 2 (2^1) indicates that a one bit-sum is computed at
a time. A DA radix of 4 (2^2) indicates that a two bit-sums are computed at a time, and
so on.

To compute more than one bit-sum at a time, the coder replicates the LUT. For example,
to perform DA on two bits at a time (radix 4), the odd bits are fed to one LUT and the
even bits are simultaneously fed to an identical LUT. The LUT results corresponding to
odd bits are left-shifted before they are added to the LUT results corresponding to even
bits. This result is then fed into a scaling accumulator that shifts its feedback value by
two places.

Processing more than one bit at a time introduces a degree of parallelism into the
operation, which can improve performance at the expense of area. The DARadix property
lets you specify the number of bits processed simultaneously in DA.

Reducing LUT Size

The size of the LUT grows exponentially with the order of the filter. For a filter with N
coefficients, the LUT must have 2^N values. For higher-order filters, LUT size must be
reduced to reasonable levels. To reduce the size, you can subdivide the LUT into several
LUTs, called LUT partitions. Each LUT partition operates on a different set of taps. The
results obtained from the partitions are summed.

For example, for a 160 tap filter, the LUT size is (2^160)*W bits, where W is the word
size of the LUT data. You can achieve a significant reduction in LUT size by dividing the

 Distributed Arithmetic for FIR Filters

4-23

LUT into 16 LUT partitions, each taking 10 inputs (taps). This division reduces the total
LUT size to 16*(2^10)*W bits.

Although LUT partitioning reduces LUT size, the architecture uses more adders to sum
the LUT data.

The DALUTPartition property lets you specify how the LUT is partitioned in DA.

Requirements and Considerations for Generating Distributed Arithmetic
Code

The coder lets you control how DA code is generated using the DALUTPartition and
DARadix properties (or equivalent Generate HDL dialog box options). Before using
these properties, review the following general requirements, restrictions, and other
considerations for generation of DA code.

Supported Filter Types

The coder supports DA in HDL code generated for the following single-rate and multirate
FIR filter structures:

• direct form (dfilt.dffir or dsp.FIRFilter)
• direct form symmetric (dfilt.dfsymfir or dsp.FIRFilter)
• direct form asymmetric (dfilt.dfasymfir or dsp.FIRFilter)
• dsp.FIRDecimator

• dsp.FIRInterpolator

Fixed-Point Quantization Required

Generation of DA code is supported only for fixed-point filter designs.

Specifying Filter Precision

The data path in HDL code generated for the DA architecture is optimized for full
precision computations. The filter casts the result to the output data size at the final
stage. If your filter object is set to use full precision data types, numeric results from
simulating the generated HDL code are bit-true to the output of the original filter object.

If your filter object has customized word or fraction lengths, the generated DA code may
produce numeric results that are different than the output of the original filter object.

4 Optimization of HDL Filter Code

4-24

Coefficients with Zero Values

DA ignores taps that have zero-valued coefficients and reduces the size of the DA LUT
accordingly.

Considerations for Symmetric and Asymmetric Filters

For symmetric and asymmetric FIR filters:

• A bit-level preadder or presubtractor is required to add tap data values that have
coefficients of equal value and/or opposite sign. One extra clock cycle is required to
compute the result because of the additional carry bit.

• The coder takes advantage of filter symmetry. This symmetry reduces the DA LUT
size substantially, because the effective filter length for these filter types is halved.

Holding Input Data in a Valid State

Partitioned distributed arithmetic architectures implement internal clock rates higher
than the input rate. In such filter implementations, there are N cycles (N >= 2) of the
base clock for each input sample. You can specify how many clock cycles the test bench
holds the input data values in a valid state.

• When you select Hold input data between samples (the default), the test bench
holds the input data values in a valid state for N clock cycles.

• When you clear Hold input data between samples, the test bench holds input data
values in a valid state for only one clock cycle. For the next N-1 cycles, the test bench
drives the data to an unknown state (expressed as 'X') until the next input sample
is clocked in. Forcing the input data to an unknown state verifies that the generated
filter code registers the input data only on the first cycle.

Distributed Arithmetic via generatehdl Properties

Two properties specify distributed arithmetic options to the generatehdl function:

• DALUTPartition — Number and size of lookup table (LUT) partitions.
• DARadix — Number of bits processed in parallel.

You can use the helper function hdlfilterdainfo to explore possible partitions and
radix settings for your filter.

For examples, see

 Distributed Arithmetic for FIR Filters

4-25

• “Distributed Arithmetic for Single Rate Filters” on page 9-10
• “Distributed Arithmetic for Multirate Filters” on page 9-11
• “Distributed Arithmetic for Cascaded Filters” on page 9-11

Distributed Arithmetic Options in the Generate HDL Dialog Box

The Generate HDL dialog box provides several options related to DA code generation.

• The Architecture pop-up menu, which lets you enable DA code generation and
displays related options.

• The Specify folding drop-down menu, which lets you directly specify the folding
factor, or set a value for the DARadix property.

• The Specify LUT drop-down menu, which lets you directly set a value for the
DALUTPartition property. You can also select an address width for the LUT. If you
specify an address width, the coder uses input LUTs as required.

The Generate HDL dialog box initially displays default DA-related option values that
correspond to the current filter design. For the requirements for setting these options, see
DALUTPartition and DARadix.

To specify DA code generation using the Generate HDL dialog box, follow these steps:

1 Design a FIR filter (using FDATool, filterbuilder, or MATLAB commands)
that meets the requirements described in “Requirements and Considerations for
Generating Distributed Arithmetic Code” on page 4-23.

2 Open the Generate HDL dialog box.
3 Select Distributed Arithmetic (DA) from the Architecture pop-up menu.

When you select this option, the related Specify folding and Specify LUT options
are displayed below the Architecture menu. The following figure shows the default
DA options for a direct form FIR filter.

4 Optimization of HDL Filter Code

4-26

4 Select one of the following options from the Specify folding drop-down menu:

• Folding factor (default): Select a folding factor from the drop-down menu to
the right of Specify folding. The menu contains an exhaustive list of folding
factor options for the filter.

• DA radix: Select the number of bits processed simultaneously, expressed as a
power of 2. The default DA radix value is 2, specifying processing of one bit at a
time, or fully serial DA. If desired, set the DA radix field to a nondefault value.

5 Select one of the following options from the Specify LUT drop-down menu:

 Distributed Arithmetic for FIR Filters

4-27

• Address width (default): Select from the drop-down menu to the right of
Specify LUT. The menu contains an exhaustive list of LUT address widths for
the filter.

• Partition: Select, or enter, a vector specifying the number and size of LUT
partitions.

6 Set other HDL options as required, and generate code. Invalid or illegal values for
LUT Partition or DA Radix are reported at code generation time.

Viewing Detailed DA Options

As you interact with the Specify folding and Specify LUT options you can see the
results of your choice in three display-only fields: Folding factor, Address width,
and Total LUT size (bits).

In addition, when you click the View details hyperlink, the coder displays a report
showing complete DA architectural details for the current filter, including:

• Filter lengths
• Complete list of applicable folding factors and how they apply to the sets of LUTs
• Tabulation of the configurations of LUTs with total LUT Size and LUT details

The following figure shows a typical report.

4 Optimization of HDL Filter Code

4-28

 Distributed Arithmetic for FIR Filters

4-29

DA Interactions with Other HDL Options

When Distributed Arithmetic (DA) is selected in the Architecture menu,
some other HDL options change automatically to settings that correspond to DA code
generation:

• Coefficient multipliers is set to Multiplier and disabled.
• FIR adder style is set to Tree and disabled.
• Add input register (in the Ports pane) is selected and disabled. (An input register,

used as part of a shift register, is used in DA code.)
• Add output register (in the Ports pane) is selected and disabled.

4 Optimization of HDL Filter Code

4-30

Architecture Options for Cascaded Filters

You can specify unique serial, distributed arithmetic, or parallel architectures for each
stage of cascade filters. These options lead to area efficient implementations of cascade
filters, including Digital Down Converter (DDC), and Digital Up Converter (DUC)
objects. You can use this feature only with the command-line interface (generatehdl).
When you use the Generate HDL dialog box, all stages of a cascade use the same
architecture options.

You can pass a cell array of values to the SerialPartition, DALUTPartition, and
DARadix properties, with each element corresponding to its respective stage. To skip the
corresponding specification for a stage, specify the default value of that property. When
you set a partition to a size of -1, the coder implements a parallel architecture for that
stage.

Property Default Value

SerialPartition –1
DALUTPartition –1
DARadix 2

When you create a cascaded filter, Filter Design HDL Coder software performs the
following actions:

• Generates code for each stage as per the inferred architecture.
• Generates an timing controller at the top level. This controller then produces clock

enables for the module in each stage, which corresponds to the rate and folding factor
of that module.

Tip Use the hdlfilterserialinfo function to display the effective filter length and
partitioning options for each filter stage of a cascade.

For examples, see

• “Distributed Arithmetic for Cascaded Filters” on page 9-11
• “Serial Partitions for Cascaded Filter” on page 9-8
• “Cascaded Filter with Multiple Architectures” on page 9-13

 CSD Optimizations for Coefficient Multipliers

4-31

CSD Optimizations for Coefficient Multipliers

By default, the coder produces code that includes coefficient multipliers. You can
optimize these operations to decrease the area and maintain or increase clock speed.
You can replace multiplier operations with additions of partial products produced by
canonical signed digit (CSD) or factored CSD techniques. These techniques minimize
the number of addition operations required for constant multiplication by representing
binary numbers with a minimum count of nonzero digits. The optimization you can
achieve depends on the binary representation of the coefficients used.

Note: The coder does not use coefficient multiplier operations for multirate filters.
Therefore, Coefficient multipliers options are disabled for multirate filters.

To optimize coefficient multipliers (for nonmultirate filter types):

1 Select CSD or Factored-CSD from the Coefficient multipliers menu in the Filter
architecture pane of the Generate HDL dialog box.

2 To account for numeric differences, consider setting an error margin for the
generated test bench. When comparing the results, the test bench ignores the
number of least significant bits specified in the error margin. To set an error margin,

a Select the Test Bench pane in the Generate HDL dialog box. Then click the
Configuration tab.

b Set the Error margin (bits) field to an integer that indicates the maximum
acceptable number of bits of difference in the numeric results.

3 Continue setting other options or click Generate to initiate code generation.

If you are generating code for an FIR filter, see “Multiplier Input and Output Pipelining
for FIR Filters” on page 4-33 for information on a related optimization.

Command-Line Alternative: Use the generatehdl function with the property
CoeffMultipliers to optimize coefficient multipliers with CSD techniques.

4 Optimization of HDL Filter Code

4-32

Improving Filter Performance with Pipelining

In this section...

“Optimizing the Clock Rate with Pipeline Registers” on page 4-32
“Multiplier Input and Output Pipelining for FIR Filters” on page 4-33
“Optimizing Final Summation for FIR Filters” on page 4-34
“Specifying or Suppressing Registered Input and Output” on page 4-36

Optimizing the Clock Rate with Pipeline Registers

You can optimize the clock rate used by filter code by applying pipeline registers.
Although the registers increase the overall filter latency and space used, they provide
significant improvements to the clock rate. These registers are disabled by default. When
you enable them, the coder adds registers between stages of computation in a filter.

For... Pipeline Registers Are Added Between...

FIR, antisymmetric FIR, and symmetric FIR
filters

Each level of the final summation tree

Transposed FIR filters Coefficient multipliers and adders
IIR filters Sections

For example, for a sixth order IIR filter, the coder adds two pipeline registers. The coder
inserts a pipeline register between the first and second section, and between the second
and third section.

For FIR filters, the use of pipeline registers optimizes filter final summation. For details,
see “Optimizing Final Summation for FIR Filters” on page 4-34.

Note: Pipeline registers in FIR, antisymmetric FIR, and symmetric FIR filters can
produce numeric results that differ from the results produced by the original filter object,
because they force the tree mode of final summation.

To use pipeline registers,

 Improving Filter Performance with Pipelining

4-33

1 Select the Add pipeline registers option in the Filter architecture pane of the
Generate HDL dialog box.

2 For FIR, antisymmetric FIR, and symmetric FIR filters, consider setting an error
margin for the generated test bench to account for numeric differences. The error
margin is the number of least significant bits the test bench ignores when comparing
the results. To set an error margin:

a Select the Test Bench pane in the Generate HDL dialog box. Then click the
Configuration tab.

b Set the Error margin (bits) field to an integer that indicates the maximum
acceptable number of bits of difference in the numeric results.

3 Continue setting other options or click Generate to initiate code generation.

Command-Line Alternative: Use the generatehdl function with the property
AddPipelineRegisters to optimize the filters with pipeline registers.

Multiplier Input and Output Pipelining for FIR Filters

If you retain multiplier operations for a FIR filter, you can achieve higher clock rates by
adding pipeline stages at multiplier inputs or outputs.

The following figure shows the GUI options for multiplier pipelining options. To enable
these options, Coefficient multipliers to Multiplier.

• Multiplier input pipeline: To add pipeline stages before each multiplier, enter the
desired number of stages as an integer greater than or equal to 0.

• Multiplier output pipeline: To add pipeline stages after each multiplier, enter the
desired number of stages as an integer greater than or equal to 0.

4 Optimization of HDL Filter Code

4-34

Command-Line Alternative: Use the generatehdl function with the
MultiplierInputPipeline and MultiplierOutputPipeline properties to specify multiplier
pipelining for FIR filters.

Optimizing Final Summation for FIR Filters

If you are generating HDL code for an FIR filter, consider optimizing the final
summation technique to be applied to the filter. By default, the coder applies linear
adder summation, which is the final summation technique discussed in most DSP text
books. Alternatively, you can instruct the coder to apply tree or pipeline final summation.
When set to tree mode, the coder creates a final adder that performs pairwise addition
on successive products that execute in parallel, rather than sequentially. Pipeline mode

 Improving Filter Performance with Pipelining

4-35

produces results similar to tree mode with the addition of a stage of pipeline registers
after processing each level of the tree.

In comparison,

• The number of adder operations for linear and tree mode are the same. The timing for
tree mode can be better due to parallel additions.

• Pipeline mode optimizes the clock rate, but increases the filter latency. The latency
increases by log2(number of products), rounded up to the nearest integer.

• Linear mode helps attain numeric accuracy in comparison to the original filter object.
Tree and pipeline modes can produce numeric results that differ from the results
produced by the filter object.

To change the final summation to be applied to an FIR filter:

1 Select one of these options in the Filter architecture pane of the Generate HDL
dialog box.

For... Select...

Linear mode (the default) Linear from the FIR adder style menu
Tree mode Tree from the FIR adder style menu
Pipeline mode The Add pipeline registers check box

2 If you specify tree or pipelined mode, consider setting an error margin for the
generated test bench to account for numeric differences. The error margin is the
number of least significant bits the test bench ignores when comparing the results.
To set an error margin,

a Select the Test Bench pane in the Generate HDL dialog box. Then click the
Configuration tab.

b Set the Error margin (bits) field to an integer that indicates the maximum
acceptable number of bits of difference in the numeric results.

3 Continue setting other options or click Generate to initiate code generation.

Command-Line Alternative: Use the generatehdl function with the property
FIRAdderStyle or AddPipelineRegisters to optimize the final summation for FIR filters.

4 Optimization of HDL Filter Code

4-36

Specifying or Suppressing Registered Input and Output

The coder adds an extra input register (input_register) and an extra output register
(output_register) during HDL code generation. These extra registers can be useful for
timing purposes, but they add to the overall latency. The following process block writes
to extra output register output_register when a clock event occurs and clk is active
high (1):

Output_Register_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 output_register <= (OTHERS => '0');

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 output_register <= output_typeconvert;

 END IF;

 END IF;

END PROCESS Output_Register_Process;

If overall latency is a concern for your application and you do not have timing
requirements, you can suppress generation of the extra registers as follows:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Ports tab in the Additional settings pane.
3 Clear Add input register and Add output register as required. The following

figure shows the setting for suppressing the generation of an extra input register.

 Improving Filter Performance with Pipelining

4-37

Command-Line Alternative: Use the generatehdl and function with the properties
AddInputRegister andAddOutputRegister to add an extra input or output register.

4 Optimization of HDL Filter Code

4-38

Overall HDL Filter Code Optimization

In this section...

“Optimize for HDL” on page 4-38
“Set Error Margin for Test Bench” on page 4-39

Optimize for HDL

By default, generated HDL code is bit-compatible with the numeric results produced
by the original filter object. The Optimize for HDL option generates HDL code that
is slightly optimized for clock speed or space requirements. However, this optimization
causes the coder to:

• Make tradeoffs concerning data types.
• Avoid extra quantization.
• Generate code that produces numeric results that are different than the results

produced by the original filter object.

To optimize generated code for clock speed or space requirements:

1 Select Optimize for HDL in the Filter architecture pane of the Generate HDL
dialog box.

2 Consider setting an error margin for the generated test bench. The error margin
is the number of least significant bits the test bench ignores when comparing the
results. To set an error margin,

a Select the Test Bench pane in the Generate HDL dialog box. Then click the
Configuration tab.

b Set the Error margin (bits) field to an integer that indicates the maximum
acceptable number of bits of difference in the numeric results.

3 Continue setting other options or click Generate to initiate code generation.

Command-Line Alternative: Use the generatehdl function with the property
OptimizeForHDL to enable these optimizations.

 Overall HDL Filter Code Optimization

4-39

Set Error Margin for Test Bench

Customizations that provide optimizations can generate test bench code that produces
numeric results that differ from results produced by the original filter object. These
options include:

• Optimize for HDL
• FIR adder style set to Tree
• Add pipeline registers for FIR, asymmetric FIR, and symmetric FIR filters

If you choose to use these options, consider setting an error margin for the generated test
bench to account for differences in numeric results. The error margin is the number of
least significant bits the test bench ignores when comparing the results. To set an error
margin:

1 Select the Test Bench pane in the Generate HDL dialog box.
2 Within the Test Bench pane, select the Configuration subpane.
3 For fixed-point filters, the initial Error margin (bits) field has a default value of 4.

To change the error margin, enter an integer in the Error margin (bits) field. In
the figure, the error margin is set to 4 bits.

4 Optimization of HDL Filter Code

4-40

Command-Line Alternative: Use the generatehdl function with the property
ErrorMargin to set the comparison tolerance.

5

Customization of HDL Filter Code

• “HDL File Names and Locations” on page 5-2
• “HDL Identifiers and Comments” on page 5-8
• “Ports and Resets” on page 5-20
• “HDL Constructs” on page 5-27

5 Customization of HDL Filter Code

5-2

HDL File Names and Locations

In this section...

“Setting the Location of Generated Files” on page 5-2
“Naming the Generated Files and Filter Entity” on page 5-3
“Set HDL File Name Extensions” on page 5-4
“Splitting Entity and Architecture Code Into Separate Files” on page 5-6

Setting the Location of Generated Files

By default, the coder places generated HDL files in the subfolder hdlsrc under your
current working folder. To direct the coder output to a folder other than the default
target folder, use either the Folder field or the Browse button in the Target pane of
the Generate HDL dialog box.

Clicking the Browse button opens a browser window that lets you select (or create) the
folder where the coder puts generated files. When the folder is selected, the full path and
folder name are automatically entered into the Folder field.

Alternatively, you can enter the folder specification directly into the Folder field. If you
specify a folder that does not exist, the coder creates the folder for you before writing the
generated files. Your folder specification can be one of the following:

• Folder name. In this case, the coder looks for the subfolder under your current
working folder. If it cannot find the specified folder, the coder creates it.

• An absolute path to a folder under your current working folder. If the coder cannot
find the specified folder, the coder creates it.

• A relative path to a higher-level folder under your current working folder. For
example, if you specify ../../../myfiltvhd, the coder checks whether a folder
named myfiltvhd exists three levels up from your current working folder. The coder
then creates the folder if it does not exist, and writes generated HDL files to that
folder.

In the following figure, the folder is set to MyFIRBetaVHDL.

 HDL File Names and Locations

5-3

Given this setting, the coder creates the subfolder MyFIRBetaVHDL under the current
working folder and writes generated HDL files to that folder.

Command-Line Alternative: Use the generatehdl function with the TargetDirectory
property to redirect coder output.

Naming the Generated Files and Filter Entity

To set the string that the coder uses to name the filter entity or module and generated
files, specify a new value in the Name field of the Filter settings pane of the Generate
HDL dialog box. The coder uses the Name string to:

• Label the VHDL entity or Verilog module for your filter.
• Name the file containing the HDL code for your filter.
• Derive names for the filter's test bench and package files.

Derivation of File Names

By default, the coder creates the HDL files listed in the following table. File names in
generated HDL code derive from the name of the filter for which the HDL code is being
generated and the file type extension .vhd or .v for VHDL and Verilog, respectively. The
table lists example file names based on filter name Hq.

Language Generated File File Name Example

Source file for the
quantized filter

dfilt_name.v Hq.vVerilog

Source file for the test
bench

dfilt_name_tb.v Hq_tb.v

Source file for the
quantized filter

dfilt_name.vhd Hq.vhdVHDL

Source file for the test
bench

dfilt_name_tb.vhd Hq_tb.vhd

5 Customization of HDL Filter Code

5-4

Language Generated File File Name Example

Package file, if
required by the filter
design

dfilt_name_pkg.vhd Hq_pkg.vhd

By default, the coder generates a single test bench file, containing test bench helper
functions, data, and test bench code. You can split these elements into separate files, as
described in “Splitting Test Bench Code and Data into Separate Files” on page 6-13.

By default, the code for a VHDL entity and architecture is written to a single VHDL
source file. Alternatively, you can specify that the coder write the generated code for
the entity and architectures to separate files. For example, if the filter name is Hd, the
coder writes the VHDL code for the filter to files Hd_entity.vhd and Hd_arch.vhd (see
“Splitting Entity and Architecture Code Into Separate Files” on page 5-6).

Derivation of Entity Names

The coder also uses the filter name to name the VHDL entity or Verilog module that
represents the quantized filter in the HDL code. Assuming a filter name of Hd, the name
of the filter entity or module in the HDL code is Hd.

Set HDL File Name Extensions

• “Set File Name Extension Via the Generate HDL Tool” on page 5-4
• “Set HDL File Name Extensions Via the Command-Line” on page 5-6

Set File Name Extension Via the Generate HDL Tool

When you select VHDL code generation, by default the filter HDL files are generated
with a .vhd file extension. When you select Verilog, the default file extension is .v. To
change the file extension,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Type the new file extension in either the VHDL file extension or Verilog file

extension field. The field for the language you have not selected is disabled.

This figure shows how to specify an alternate file extension for VHDL files. The coder
generates the filter file MyFIR.vhdl.

 HDL File Names and Locations

5-5

Note: When specifying strings for file names and file type extensions, consider platform-
specific requirements and restrictions. Also consider postfix strings that the coder
appends to the Name string, such as _tb and_pkg.

5 Customization of HDL Filter Code

5-6

Set HDL File Name Extensions Via the Command-Line

Command-Line Alternative: Use the generatehdl function with the Name property
to set the name of your filter entity and the base string for generated HDL file names.
To specify an alternative file type extension for generated files, call the function with the
VerilogFileExtension or VHDLFileExtension property.

Splitting Entity and Architecture Code Into Separate Files

By default, the coder includes a VHDL entity and architecture code in the same
generated VHDL file. Alternatively, you can instruct the coder to place the entity and
architecture code in separate files. For example, instead of generated code residing
in MyFIR.vhd, you can specify that the code reside in MyFIR_entity.vhd and
MyFIR_arch.vhd.

The names of the entity and architecture files derive from:

• The base file name, as specified by the Name field in the Target pane of the
Generate HDL dialog box.

• Default postfix string values _entity and _arch.
• The VHDL file type extension, as specified by the VHDL file extension field on the

General pane of the Generate HDL dialog box.

To split the filter source file, do the following:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Select Split entity and architecture. The Split entity file postfix and Split

arch. file postfix fields are now enabled.

 HDL File Names and Locations

5-7

4 Specify new strings in the postfix fields if you want to use postfix string values other
than _entity and _arch to identify the generated VHDL files.

Note: When specifying a string for use as a postfix value in file names, consider
the size of the base name and platform-specific file naming requirements and
restrictions.

Command-Line Alternative: Use the generatehdl function with the property
SplitEntityArch to split the VHDL code into separate files. To modify the file name
postfix for the separate entity and architecture files, use the SplitEntityFilePostfix and
SplitArchFilePostfix properties.

5 Customization of HDL Filter Code

5-8

HDL Identifiers and Comments

In this section...

“Specifying a Header Comment” on page 5-8
“Resolving Entity or Module Name Conflicts” on page 5-10
“Resolving HDL Reserved Word Conflicts” on page 5-11
“Setting the Postfix String for VHDL Package Files” on page 5-14
“Specifying a Prefix for Filter Coefficients” on page 5-15
“Specifying a Postfix String for Process Block Labels” on page 5-16
“Setting a Prefix for Component Instance Names” on page 5-17
“Setting a Prefix for Vector Names” on page 5-18

Specifying a Header Comment

The coder includes a header comment block at the top of the files it generates. The
header comment block contains the specifications of the generating filter and the coder
options that were selected at the time HDL code was generated.

You can use the Comment in header option to add a comment string, to the end of the
header comment block in each generated file. For example, use this option to add “This
module was automatically generated”. With this change, the preceding header
comment block would appear as follows:

-- ---

--

-- Module: Hlp

--

-- Generated by MATLAB(R) 7.11 and the Filter Design HDL Coder 2.7.

--

-- Generated on: 2010-08-31 13:32:16

--

-- This module was automatically generated

--

-- ---

-- ---

-- HDL Code Generation Options:

--

-- TargetLanguage: VHDL

-- Name: Hlp

-- UserComment: User data, length 47

 HDL Identifiers and Comments

5-9

-- Filter Specifications:

--

-- Sampling Frequency : N/A (normalized frequency)

-- Response : Lowpass

-- Specification : Fp,Fst,Ap,Ast

-- Passband Edge : 0.45

-- Stopband Edge : 0.55

-- Passband Ripple : 1 dB

-- Stopband Atten. : 60 dB

-- ---

-- ---

-- HDL Implementation : Fully parallel

-- Multipliers : 43

-- Folding Factor : 1

-- ---

-- Filter Settings:

--

-- Discrete-Time FIR Filter (real)

-- -------------------------------

-- Filter Structure : Direct-Form FIR

-- Filter Length : 43

-- Stable : Yes

-- Linear Phase : Yes (Type 1)

-- Arithmetic : fixed

-- Numerator : s16,16 -> [-5.000000e-001 5.000000e-001)

-- Input : s16,15 -> [-1 1)

-- Filter Internals : Full Precision

-- Output : s33,31 -> [-2 2) (auto determined)

-- Product : s31,31 -> [-5.000000e-001 5.000000e-001) (auto determined)

-- Accumulator : s33,31 -> [-2 2) (auto determined)

-- Round Mode : No rounding

-- Overflow Mode : No overflow

-- ---

To add a header comment,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Type the comment string in the Comment in header field, as shown in the

following figure.

5 Customization of HDL Filter Code

5-10

Command-Line Alternative: Use the generatehdl function with the property
UserComment to add a comment string to the end of the header comment block in each
generated HDL file.

Resolving Entity or Module Name Conflicts

The coder checks whether multiple entities in VHDL or multiple modules in Verilog
share the same name. If a name conflict exists, the coder appends the postfix _block to
the second of the two matching strings.

To change the postfix string:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Enter a new string in the Entity conflict postfix field, as shown in the following

figure.

 HDL Identifiers and Comments

5-11

Command-Line Alternative: Use the generatehdl function with the property
EntityConflictPostfix to change the entity or module conflict postfix string.

Resolving HDL Reserved Word Conflicts

The coder checks whether strings that you specify as names, postfix values, or labels
are VHDL or Verilog reserved words. See “Reserved Word Tables” on page 5-12 for
listings of VHDL and Verilog reserved words.

If you specify a reserved word, the coder appends the postfix _rsvd to the string. For
example, if you try to name your filter mod, for VHDL code, the coder adds the postfix
_rsvd to form the name mod_rsvd.

To change the postfix string:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Enter a new string in the Reserved word postfix field, as shown in the following

figure.

5 Customization of HDL Filter Code

5-12

Command-Line Alternative: Use the generatehdl function with the property
ReservedWordPostfix to change the reserved word postfix string.

Reserved Word Tables

The following tables list VHDL and Verilog reserved words.

VHDL Reserved Words

abs access after alias all

and architecture array assert attribute

begin block body buffer bus

case component configuration constant disconnect

downto else elsif end entity

exit file for function generate

generic group guarded if impure

in inertial inout is label

library linkage literal loop map

mod nand new next nor

not null of on open

or others out package port

 HDL Identifiers and Comments

5-13

postponed procedure process pure range

record register reject rem report

return rol ror select severity

signal shared sla sll sra

srl subtype then to transport

type unaffected units until use

variable wait when while with

xnor xor

Verilog Reserved Words

always and assign automatic begin

buf bufif0 bufif1 case casex

casez cell cmos config deassign

default defparam design disable edge

else end endcase endconfig endfunction

endgenerate endmodule endprimitive endspecify endtable

endtask event for force forever

fork function generate genvar highz0

highz1 if ifnone incdir include

initial inout input instance integer

join large liblist library localparam

macromodule medium module nand negedge

nmos nor noshowcancelled not notif0

notif1 or output parameter pmos

posedge primitive pull0 pull1 pulldown

pullup pulsestyle_oneventpulsestyle_ondetectrcmos real

realtime reg release repeat rnmos

rpmos rtran rtranif0 rtranif1 scalared

showcancelled signed small specify specparam

strong0 strong1 supply0 supply1 table

5 Customization of HDL Filter Code

5-14

task time tran tranif0 tranif1

tri tri0 tri1 triand trior

trireg unsigned use vectored wait

wand weak0 weak1 while wire

wor xnor xor

Setting the Postfix String for VHDL Package Files

By default, the coder appends the postfix _pkg to the base file name when generating a
VHDL package file. To rename the postfix string for package files, do the following:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Specify a new value in the Package postfix field.

 HDL Identifiers and Comments

5-15

Note: When specifying a string for use as a postfix in file names, consider the size of
the base name and platform-specific file naming requirements and restrictions.

Command-Line Alternative: Use the generatehdl function with the PackagePostfix
property to rename the file name postfix for VHDL package files.

Specifying a Prefix for Filter Coefficients

The coder declares the coefficients for the filter as constants within a rtl architecture.
The coder derives the constant names adding the prefix coeff. The coefficient names
depend on the type of filter.

For... The Prefix Is Concatenated with...

FIR filters Each coefficient number, starting with 1.

Examples: coeff1, coeff22
IIR filters An underscore (_) and an a or b coefficient name (for example, _a2, _b1,

or _b2) followed by the string _sectionn, where n is the section number.

Example: coeff_b1_section3 (first numerator coefficient of the third
section)

For example:
ARCHITECTURE rtl OF Hd IS

 -- Type Definitions

 TYPE delay_pipeline_type IS ARRAY(NATURAL range <>) OF signed(15 DOWNTO 0);-- sfix16_En15

 CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

 CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

 CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(-81, 16); -- sfix16_En15

 CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(120, 16); -- sfix16_En15

To use a prefix other than coeff,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Enter a new string in the Coefficient prefix field, as shown in the following figure.

5 Customization of HDL Filter Code

5-16

The string that you specify

• Must start with a letter.
• Cannot include a double underscore (__).

Note: If you specify a VHDL or Verilog reserved word, the coder appends a reserved
word postfix to the string to form a valid identifier. If you specify a prefix that
ends with an underscore, the coder replaces the underscore character with under.
For example, if you specify coef_, the coder generates coefficient names such as
coefunder1.

Command-Line Alternative: Use the generatehdl function with the property
CoeffPrefix to change the base name for filter coefficients.

Specifying a Postfix String for Process Block Labels

The coder generates process blocks to modify the content of the registers. The label for
each of these blocks is derived from a register name and the postfix _process. For
example, the coder derives the label delay_pipeline_process in the following block
from the register name delay_pipeline and the postfix string _process.

delay_pipeline_process : PROCESS (clk, reset)

BEGIN

 HDL Identifiers and Comments

5-17

 IF reset = '1' THEN

 delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 delay_pipeline(0) <= signed(filter_in)

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS delay_pipeline_process;

The Clocked process postfix property lets you change the postfix string to a value
other than _process. For example, to change the postfix string to _clkproc, do the
following:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Enter a new string in the Clocked process postfix field, as shown in the following

figure.

Command-Line Alternative: Use the generatehdl function with the property
ClockProcessPostfix to change the postfix string appended to process labels.

Setting a Prefix for Component Instance Names

Instance prefix specifies a string to be prefixed to component instance names in
generated code. The default string is u_.

5 Customization of HDL Filter Code

5-18

You can of set the postfix string to a value other than u_. To change the string:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Enter a new string in the Instance prefix field, as shown in the following figure.

Command-Line Alternative: Use the generatehdl function with the property
InstancePrefix to change the instance prefix string.

Setting a Prefix for Vector Names

Vector prefix specifies a string to be prefixed to vector names in generated VHDL code.
The default string is vector_of_.

Note: Vector prefix is not supported for Verilog code generation.

You can set the prefix string to a value other than vector_of_. To change the string:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the General tab in the Additional settings pane.
3 Enter a new string in the Vector prefix field, as shown in the following figure.

 HDL Identifiers and Comments

5-19

Command-Line Alternative: Use the generatehdl function with the property
VectorPrefix to change the instance prefix string.

5 Customization of HDL Filter Code

5-20

Ports and Resets

In this section...

“Naming HDL Ports” on page 5-20
“Specifying the HDL Data Type for Data Ports” on page 5-21
“Selecting Asynchronous or Synchronous Reset Logic” on page 5-22
“Setting the Asserted Level for the Reset Input Signal” on page 5-23
“Suppressing Generation of Reset Logic” on page 5-25

Naming HDL Ports

The default names for filter HDL ports are as follows:

HDL Port Default Port Name

Input port filter_in

Output port filter_out

Clock port clk

Clock enable port clk_enable

Reset port reset

Fractional delay port
(Farrow filters only)

filter_fd

For example, the default VHDL declaration for entity Hd looks like the following.
ENTITYHd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

 filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

ENDHd;

To change port names,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Ports tab in the Additional settings pane. The following figure

highlights the port name fields for Input port, Output port, Clock input port,
Reset input port, and Clock enable output port.

 Ports and Resets

5-21

3 Enter new strings in the port name fields.

Command-Line Alternative: Use the generatehdl function with the properties
InputPort, OutputPort, ClockInputPort, ClockEnableInputPort, and ResetInputPort to
change the names of the filter ports in the generated HDL code.

Specifying the HDL Data Type for Data Ports

By default, filter input and output data ports have data type std_logic_vector in
VHDL and type wire in Verilog. If you are generating VHDL code, alternatively, you can
specify signed/unsigned, and for output data ports, Same as input data type.
The coder applies type SIGNED or UNSIGNED based on the data type specified in the filter
design.

To change the VHDL data type setting for the input and output data ports,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Ports tab in the Additional settings pane.
3 Select a data type from the Input data type or Output data type menu identified

in the following figure.

5 Customization of HDL Filter Code

5-22

By default, the output data type is the same as the input data type.

The type for Verilog ports is wire, and cannot be changed.

Note: The setting of Input data type does not apply to double-precision input,
which is generated as type REAL for VHDL and wire[63:0] for Verilog.

Command-Line Alternative: Use the generatehdl function with the properties
InputType and OutputType to change the VHDL data type for the input and output
ports.

Selecting Asynchronous or Synchronous Reset Logic

By default, generated HDL code for registers uses asynchronous reset logic. Select
asynchronous or synchronous reset logic depending on the type of device you are
designing (for example, FPGA or ASIC) and preference.

The following code fragment illustrates the use of asynchronous resets. The process block
does not check for an active clock before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));

 Ports and Resets

5-23

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 delay_pipeline(0) <= signed(filter_in)

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS delay_pipeline_process;

To change the reset type to synchronous, select Synchronous from the Reset type
menu in the Global settings pane of the Generate HDL dialog box.

Code for a synchronous reset follows. This process block checks for a clock event, the
rising edge, before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)

BEGIN

 IF rising_edge(clk) THEN

 IF reset = '1' THEN

 delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));

 ELSIF clk_enable = '1' THEN

 delay_pipeline(0) <= signed(filter_in)

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS delay_pipeline_process;

Command-Line Alternative: Use the generatehdl function with the property
ResetType to set the reset style for the registers in the generated HDL code.

Setting the Asserted Level for the Reset Input Signal

The asserted level for the reset input signal determines whether that signal must be
driven to active high (1) or active low (0) for registers to be reset in the filter design. By
default, the coder sets the asserted level to active high. For example, the following code

5 Customization of HDL Filter Code

5-24

fragment checks whether reset is active high before populating the delay_pipeline
register:

 Ports and Resets

5-25

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

To change the setting to active low, select Active-low from the Reset asserted level
menu in the Global settings pane of the Generate HDL dialog box.

With this change, the IF statement in the preceding generated code changes to

IF reset = '0' THEN

Note: The Reset asserted level setting also determines the reset level for test bench
reset input signals.

Command-Line Alternative: Use the generatehdl function with the property
ResetAssertedLevel to set the asserted level for the reset input signal.

Suppressing Generation of Reset Logic

For some FPGA applications, it is desirable to avoid generation of resets. The Remove
reset from option in the Global settings pane of the Generate HDL dialog box lets you
suppress generation of resets from shift registers.

To suppress generation of resets from shift registers, select Shift register from the
Remove reset from pull-down menu in the Global settings pane of the Generate HDL
dialog box.

5 Customization of HDL Filter Code

5-26

If you do not want to suppress generation of resets from shift registers, leave Remove
reset from set to its default, which is None.

Command-Line Alternative: Use the generatehdl function with the property
RemoveResetFrom to suppress generation of resets from shift registers.

 HDL Constructs

5-27

HDL Constructs

In this section...

“Representing VHDL Constants with Aggregates” on page 5-27
“Unrolling and Removing VHDL Loops” on page 5-28
“Using the VHDL rising_edge Function” on page 5-29
“Suppressing the Generation of VHDL Inline Configurations” on page 5-30
“Specifying VHDL Syntax for Concatenated Zeros” on page 5-31
“Specifying Input Type Treatment for Addition and Subtraction Operations” on page
5-32
“Suppressing Verilog Time Scale Directives” on page 5-33
“Using Complex Data and Coefficients” on page 5-34

Representing VHDL Constants with Aggregates

By default, the coder represents constants as scalars or aggregates depending on the size
and type of the data. The coder represents values that are less than 232 – 1 as integers
and values greater than or equal to 232 – 1 as aggregates. The following VHDL constant
declarations are examples of declarations generated by default for values less than 32
bits:
CONSTANT coeff1: signed(15 DOWNTO 0) := to_signed(-60, 16); -- sfix16_En16

CONSTANT coeff2: signed(15 DOWNTO 0) := to_signed(-178, 16); -- sfix16_En16

If you prefer that constant values be represented as aggregates, set the Represent
constant values by aggregates as follows:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Advanced tab.
3 Select Represent constant values by aggregates, as shown the following figure.

5 Customization of HDL Filter Code

5-28

The preceding constant declarations would now appear as follows:
CONSTANT coeff1: signed(15 DOWNTO 0) := (5 DOWNTO 3 => '0',1 DOWNTO 0 => '0,OTHERS =>'1');

CONSTANT coeff2: signed(15 DOWNTO 0) := (7 => '0',5 DOWNTO 4 => '0',0 => '0',OTHERS =>'1');

Command-Line Alternative: Use the generatehdl function with the property
UseAggregatesForConst to represent constants in the HDL code as aggregates.

Unrolling and Removing VHDL Loops

By default, the coder supports VHDL loops. However, some EDA tools do not support
them. If you are using such a tool along with VHDL, you can unroll and remove FOR and
GENERATE loops from the generated VHDL code. Verilog code is already unrolled.

To unroll and remove FOR and GENERATE loops,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Advanced tab. The Advanced pane appears.
3 Select Loop unrolling, as shown in the following figure.

 HDL Constructs

5-29

Command-Line Alternative: Use the generatehdl function with the property
LoopUnrolling to unroll and remove loops from generated VHDL code.

Using the VHDL rising_edge Function

The coder can generate two styles of VHDL code for checking for rising edges when the
filter operates on registers. By default, the generated code checks for a clock event, as
shown in the ELSIF statement of the following VHDL process block.

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

 ELSEIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 delay_pipeline(0) <= signed(filter_in);

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS Delay_Pipeline_Process ;

If you prefer, the coder can produce VHDL code that applies the VHDL rising_edge
function instead. For example, the ELSIF statement in the preceding process block would
be replaced with the following statement:

 ELSIF rising_edge(clk) THEN

5 Customization of HDL Filter Code

5-30

To use the rising_edge function,

1 Click Global Settings in the Generate HDL dialog box.
2 Select the Advanced tab. The Advanced pane appears.
3 Select Use 'rising_edge' for registers, as shown in the following dialog box.

Command-Line Alternative: Use the generatehdl function with the property
UseRisingEdge to use the VHDL rising_edge function to check for rising edges during
register operations.

Suppressing the Generation of VHDL Inline Configurations

VHDL configurations can be either inline with the rest of the VHDL code for an entity
or external in separate VHDL source files. By default, the coder includes configurations
for a filter within the generated VHDL code. If you are creating your own VHDL
configuration files, suppress the generation of inline configurations.

To suppress the generation of inline configurations,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Advanced tab. The Advanced pane appears.
3 Clear Inline VHDL configuration, as shown in the following figure.

 HDL Constructs

5-31

Command-Line Alternative: Use the generatehdl function with the property
InlineConfigurations to suppress the generation of inline configurations.

Specifying VHDL Syntax for Concatenated Zeros

In VHDL, the concatenation of zeros can be represented in two syntax forms. One
form, '0' & '0', is type-safe. This syntax is the default. The alternative syntax,
"000000...", can be easier to read and is more compact, but can lead to ambiguous
types.

To use the syntax "000000..." for concatenated zeros,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Advanced tab. The Advanced pane appears.
3 Clear Concatenate type safe zeros, as shown in the following figure.

5 Customization of HDL Filter Code

5-32

Command-Line Alternative: Use the generatehdl function with the property
SafeZeroConcat to use the syntax "000000...", for concatenated zeros.

Specifying Input Type Treatment for Addition and Subtraction Operations

By default, generated HDL code operates on input data using data types as specified by
the filter design, and then converts the result to the specified result type.

Typical DSP processors type cast input data to the result type before operating on the
data. Depending on the operation, the results can be different. If you want generated
HDL code to handle result typing in this way, use the Cast before sum option as
follows:

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Advanced tab. The Advanced pane appears.
3 Select Cast before sum, as shown in the following figure.

 HDL Constructs

5-33

Command-Line Alternative: Use the generatehdl function with the property
CastBeforeSum to cast input values to the result type for addition and subtraction
operations.

Relationship With Cast Before Sum in FDATool

The Cast before sum option is related to the FDATool setting for the quantization
option Cast signals before sum as follows:

• Some filter object types do not have the Cast signals before sum property. For such
filter objects, Cast before sum is effectively off when HDL code is generated; it is not
relevant to the filter.

• Where the filter object does have the Cast signals before sum property, the coder
by default follows the setting of Cast signals before sum in the filter object. This
setting is visible in the GUI. If you change the setting of Cast signals before sum,
the coder updates the setting of Cast before sum.

• However, by explicitly setting Cast before sum, you can override the Cast signals
before sum setting passed in from FDATool.

Suppressing Verilog Time Scale Directives

In Verilog, the coder generates time scale directives (ˋtimescale) by default. This
compiler directive provides a way of specifying different delay values for multiple
modules in a Verilog file.

5 Customization of HDL Filter Code

5-34

To suppress the use of ˋtimescale directives,

1 Select the Global Settings tab on the Generate HDL dialog box.
2 Select the Advanced tab. The Advanced pane appears.
3 Clear Use Verilog ˋtimescale directives, as shown in the following figure.

Command-Line Alternative: Use the generatehdl function with the property
UseVerilogTimescale to suppress the use of time scale directives.

Using Complex Data and Coefficients

The coder supports complex coefficients and complex input signals.

Enabling Code Generation for Complex Data

To generate ports and signal paths for the real and imaginary components of a complex
input signal, set Input complexity to Complex. The default setting for Input
complexity is Real, disabling generation of ports for complex input data.

The corresponding command-line property is InputComplex. By default, InputComplex
is set to 'off', disabling generation of ports for complex input data. To enable
generation of ports for complex input data, set InputComplex to 'on', as in the
following code example:
Hd = design(fdesign.lowpass,'equiripple','Filterstructure','dffir')

 HDL Constructs

5-35

generatehdl(Hd,'InputComplex','on')

The following VHDL code excerpt shows the entity definition generated by the preceding
commands:
ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in_re : IN real; -- double

 filter_in_im : IN real; -- double

 filter_out_re : OUT real; -- double

 filter_out_im : OUT real -- double

);

END Hd;

In the code excerpt, the port names generated for the real components of complex signals
have the default postfix string '_re', and port names generated for the imaginary
components of complex signals have the default postfix string '_im'.

Setting the Port Name Postfix for Complex Ports

Two code generation properties let you customize naming conventions for the real and
imaginary components of complex signals in generated HDL code. These properties are:

• The Complex real part postfix option (corresponding to the ComplexRealPostfix
command-line property) specifies a string to be appended to the names generated for
the real part of complex signals. The default postfix is '_re'.

• The Complex imaginary part postfix option (corresponding to the
ComplexImagPostfix command-line property) specifies a string to be appended to the
names generated for the imaginary part of complex signals. The default postfix is
'_im'.

6

Verification of Generated HDL Filter
Code

• “Testing with an HDL Test Bench” on page 6-2
• “Cosimulation of HDL Code with HDL Simulators” on page 6-27
• “Integration with Third-Party EDA Tools” on page 6-36

6 Verification of Generated HDL Filter Code

6-2

Testing with an HDL Test Bench

In this section...

“Workflow for Testing with an HDL Test Bench” on page 6-2
“Enabling Test Bench Generation” on page 6-9
“Renaming the Test Bench” on page 6-11
“Splitting Test Bench Code and Data into Separate Files” on page 6-13
“Configuring the Clock” on page 6-14
“Configuring Resets” on page 6-16
“Setting a Hold Time for Data Input Signals” on page 6-19
“Setting an Error Margin for Optimized Filter Code” on page 6-21
“Setting an Initial Value for Test Bench Inputs” on page 6-23
“Setting Test Bench Stimuli” on page 6-24
“Setting a Postfix for Reference Signal Names” on page 6-25

Workflow for Testing with an HDL Test Bench

Generating the Filter and Test Bench HDL Code

Use the Filter Design HDL Coder GUI or command-line interface to generate the HDL
code for your filter design and test bench. The GUI generates a VHDL or Verilog test
bench file, depending on your language selection for the generated HDL code. To specify
a different test bench language, select the Test bench language option in the Test
Bench pane of the Generate HDL dialog box. There is no command-line option for
generating the test bench in a different language than the generated HDL code.

The following figure shows settings for generating the filter (VHDL) and test bench
(Verilog) files MyFilter.vhd, and MyFilter_tb.v. The dialog box also specifies the
location for the generated files, in this case, the folder hdlsrc under the current working
folder.

 Testing with an HDL Test Bench

6-3

6 Verification of Generated HDL Filter Code

6-4

After you click Generate, the coder displays progress information similar to the
following in the MATLAB Command Window:

Starting VHDL code generation process for filter: MyFilter

Generating: C:\Work\sl_hdlcoder_work\hdlsrc\MyFilter.vhd

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: MyFilter

Starting generation of VERILOG Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating Test bench: C:\Work\sl_hdlcoder_work\hdlsrc\MyFilter_tb.v

Please wait ...

Done generating VERILOG Test Bench

Note: The length of the input stimulus samples varies from filter to filter. For example,
the value 3429 in the preceding message sequence is not fixed; the value depends on the
filter under test.

If you call the generatehdl function from the command-line interface, set code and
test bench generation options with property name and value pairs. You can also use
the function generatetbstimulus to return the test bench stimulus to a workspace
variable.

Starting the Simulator

After you generate your filter and test bench HDL files, start your simulator. When you
start the Mentor Graphics ModelSim simulator, a screen display similar to the following
appears:

 Testing with an HDL Test Bench

6-5

After starting the simulator, set the current folder to the folder that contains your
generated HDL files.

Compiling the Generated Filter and Test Bench Files

Using your choice of HDL compiler, compile the generated filter and test bench HDL
files. Depending on the language of the generated test bench and the simulator you
are using, you may have to complete some precompilation setup. For example, in the
Mentor Graphics ModelSim simulator, you might choose to create a design library to
store compiled VHDL entities, packages, architectures, and configurations.

The following Mentor Graphics ModelSim command sequence changes the current folder
to hdlsrc, creates the design library work, and compiles VHDL filter and filter test
bench code. The vlib command creates the design library work and the vcom commands
initiate the compilations.

cd hdlsrc

vlib work

vcom MyFilter.vhd

vcom MyFilter_tb.vhd

Note: For VHDL test bench code that has floating-point (double) realizations, use a
compiler that supports VHDL-93 or VHDL-02. For example, in the Mentor Graphics
ModelSim simulator, specify the vcom command with the -93 option. Do not compile
the generated test bench code with a VHDL-87 compiler. VHDL test benches using

6 Verification of Generated HDL Filter Code

6-6

double-precision data types do not support VHDL-87. The test bench code uses the image
attribute, which is available only in VHDL-93 or higher.

The following screen display shows this command sequence and informational messages
displayed during compilation.

Running the Test Bench Simulation

Once your generated HDL files are compiled, load and run the test bench. The procedure
varies depending on the simulator you are using. In the Mentor Graphics ModelSim
simulator, you load the test bench for simulation with the vsim command. For example:

vsim work.MyFilter_tb

The following display shows the results of loading work.MyFilter_tb with the vsim
command.

 Testing with an HDL Test Bench

6-7

Once the design is loaded into the simulator, consider opening a display window for
monitoring the simulation as the test bench runs. For example, in the Mentor Graphics
ModelSim simulator, you can use the add wave * command to open a wave window to
view the results of the simulation as HDL waveforms.

To start running the simulation, issue the start simulator command. For example, in the
Mentor Graphics ModelSim simulator, you can start a simulation with the run -all
command.

The following display shows the add wave * command being used to open a wave
window and the -run all command being used to start a simulation.

6 Verification of Generated HDL Filter Code

6-8

As your test bench simulation runs, watch for error messages. If error messages appear,
interpret them as they pertain to your filter design and the code generation options
you applied. For example, some HDL optimization options can produce numeric results
that differ from the results produced by the original filter object. For HDL test benches,
expected and actual results are compared. If they differ (excluding the specified error
margin), an error message similar to the following is returned:

Error in filter test: Expected xxxxxxxx Actual xxxxxxxx

You must determine whether the actual results are expected based on the customizations
you specified when generating the filter HDL code.

Note: The failure message that appears in the preceding display is not flagging an
error. If the message includes the string Test Complete, the test bench has run to
completion without encountering an error. The Failure part of the message is tied to
the mechanism the coder uses to end the simulation.

The following wave window shows the simulation results as HDL waveforms.

 Testing with an HDL Test Bench

6-9

Enabling Test Bench Generation

To enable generation of an HDL test bench:

1 Select the Test Bench pane in the Generate HDL dialog box.
2 Select the HDL test bench option, as shown in the following figure.

6 Verification of Generated HDL Filter Code

6-10

 Testing with an HDL Test Bench

6-11

3 Click Generate to generate HDL and test bench code.

Tip By default, HDL test bench is selected.

Command-Line Alternative: Use the generatehdl function with the property
GenerateHDLTestBench to generate an HDL test bench.

Renaming the Test Bench

The coder derives the name of the test bench file by appending the postfix _tb to the
name of the quantized filter object. The file type extension depends on the type of test
bench that is being generated.

If the Test Bench Is a... The Extension Is...

Verilog file Defined by the Verilog file extension field in the
General subpane of the Global Settings pane of the
Generate HDL dialog box

VHDL file Defined by the VHDL file extension field in the
Global Settings pane of the Generate HDL dialog box

The file is placed in the folder defined by the Folder option in the Target pane of the
Generate HDL dialog box.

To specify a test bench name, enter the name in the Name field of the Test bench
settings pane, as shown in the following figure.

6 Verification of Generated HDL Filter Code

6-12

Note: If you enter a string that is a VHDL or Verilog reserved word, the coder corrects
the identifier by appending the reserved word postfix to the string.

Command-Line Alternative: Use the generatehdl property TestBenchName to
specify a name for your test bench.

 Testing with an HDL Test Bench

6-13

Splitting Test Bench Code and Data into Separate Files

By default, the coder generates a single test bench file, containing test bench helper
functions, data, and test bench code. You can split these elements into separate files by
selecting the Multi-file test bench option in the Configuration subpane of the Test
Bench pane of the Generate HDL dialog box.

When you select the Multi-file test bench option, the Test bench data file name
postfix option is enabled. The test bench file names are then derived from the name of
the test bench and the postfix setting, TestBenchName_TestBenchDataPostfix.

For example, if the test bench name is my_fir_filt, and the target language is VHDL,
the default test bench file names are:

• my_fir_filt_tb.vhd: test bench code
• my_fir_filt_tb_pkg.vhd: helper functions package

6 Verification of Generated HDL Filter Code

6-14

• my_fir_filt_tb_data.vhd: data package

If the filter name is my_fir_filt and the target language is Verilog, the default test
bench file names are:

• my_fir_filt_tb.v: test bench code
• my_fir_filt_tb_pkg.v: helper functions package
• my_fir_filt_tb_data.v: test bench data

Command-Line Alternative: Use the generatehdl properties MultifileTestBench,
TestBenchDataPostfix, and TestBenchName to generate and name separate test bench
helper functions, data, and test bench code files.

Configuring the Clock

Based on default settings, the coder configures the clock for a filter test bench such that
it:

• Forces clock enable input signals to active high (1).
• Asserts the clock enable signal 1 clock cycle after deassertion of the reset signal.
• Forces clock input signals low (0) for a duration of 5 nanoseconds and high (1) for a

duration of 5 nanoseconds.

To change these clock configuration settings:

1 Click Configuration in the Test bench pane of the Generate HDL dialog box.
2 Within the Test Bench pane, select the Configuration subpane.
3 Make the following configuration changes as described in the following table:

If You Want to... Then...

Disable the forcing of clock enable
input signals

Clear Force clock enable.

Disable the forcing of clock input
signals

Clear Force clock.

Reset the number of nanoseconds that
the test bench drives the clock input
signals low (0)

Specify a positive integer or double (with a
maximum of 6 significant digits after the
decimal point) in the Clock low time field.

 Testing with an HDL Test Bench

6-15

If You Want to... Then...

Reset the number of nanoseconds that
the test bench drives the clock input
signals high (1)

Specify a positive integer or double (with a
maximum of 6 significant digits after the
decimal point) in the Clock high time
field.

Change the delay time elapsed
between the deassertion of the reset
signal and the assertion of clock enable
signal.

Specify a positive integer in the Clock
enable delay field.

The following figure highlights the applicable options.

Command-Line Alternative: Use the generatehdl properties ForceClock,
ClockHighTime, ForceClockEnable, and TestBenchClockEnableDelay to reconfigure the
test bench clock.

6 Verification of Generated HDL Filter Code

6-16

Configuring Resets

Based on default settings, the coder configures the reset for a filter test bench such that
it:

• Forces reset input signals to active high (1). (Set the test bench reset input levels with
the Reset asserted level option).

• Asserts reset input signals for a duration of 2 clock cycles.
• Applies a hold time of 2 nanoseconds for reset input signals.

Hold time is the amount of time the test bench holds the reset input signals past the
clock rising edge. The figure shows the application of a hold time (thold) for reset input
signals in the active high and active low cases. The test bench asserts reset after some
initial clock cycles defined by the Reset length option. The default Reset length of 2
clock cycles is shown.

Clock

Reset Input
Active High

thold

thold

Reset Input
Active Low

Note: The hold time applies to reset input signals only if the forcing of reset input signals
is enabled.

The following table summarizes the reset configuration settings,

If You Want to... Then...

Disable the forcing of reset
input signals

Clear Force reset in the Test Bench pane of the
Generate HDL dialog box.

 Testing with an HDL Test Bench

6-17

If You Want to... Then...

Change the length of time
(in clock cycles) during which
reset is asserted

Set Reset length (in clock cycles) to an integer greater
than or equal to 0. This option is located in the Test
Bench pane of the Generate HDL dialog box.

Change the reset value to
active low (0)

Select Active-low from the Reset asserted level menu
in the Global Settings pane of the Generate HDL dialog
box (see “Setting the Asserted Level for the Reset Input
Signal” on page 5-23)

Set the hold time Specify a positive integer or double (with a maximum of
6 significant digits after the decimal point), representing
nanoseconds, in the Hold time field. When the Hold
time changes, the Setup time (ns) value is updated. The
Setup time (ns) value computed as (clock period -
HoldTime) in nanoseconds. These options are in the Test
Bench pane of the Generate HDL dialog box.

The following figures highlight the applicable options.

6 Verification of Generated HDL Filter Code

6-18

 Testing with an HDL Test Bench

6-19

Note: The hold time and setup time settings also apply to data input signals.

Command-Line Alternative: Use the generatehdl properties ForceReset,
ResetLength, and HoldTime to reconfigure test bench resets.

Setting a Hold Time for Data Input Signals

By default, the coder applies a hold time of 2 nanoseconds for filter data input signals.
The hold time is the amount of time that data input signals are to be held past the clock
rising edge. The following figure shows the application of a hold time (thold) for data input
signals.

6 Verification of Generated HDL Filter Code

6-20

Clock

Data Input

thold

To change the hold time setting,

1 Click the Test Bench tab in the Generate HDL dialog box.
2 Within the Test Bench pane, select the Configuration subpane.
3 Specify a positive integer or double (with a maximum of 6 significant digits after the

decimal point), representing nanoseconds, in the Hold time field. In the following
figure, the hold time is set to 2 nanoseconds.

When the Hold time changes, the Setup time (ns) value updates. The coder
computes the Setup time (ns) value as (clock period - HoldTime) in
nanoseconds. Setup time (ns) is a display-only field.

 Testing with an HDL Test Bench

6-21

Note: When you enable forcing of reset input signals, the hold time and setup time
settings also apply to the reset signals.

Command-Line Alternative: Use the generatehdl property HoldTime to adjust the
hold time setting.

Setting an Error Margin for Optimized Filter Code

Customizations that provide optimizations can generate test bench code that produces
numeric results that differ from results produced by the original filter object. These
options include:

• Optimize for HDL
• FIR adder style set to Tree

6 Verification of Generated HDL Filter Code

6-22

• Add pipeline registers for FIR, asymmetric FIR, and symmetric FIR filters

To account for differences in numeric results, consider setting an error margin for the
generated test bench. The error margin is the number of least significant bits the test
bench ignores when comparing the results. To set an error margin:

1 Select the Test Bench pane in the Generate HDL dialog box.
2 Within the Test Bench pane, select the Configuration subpane.
3 For fixed-point filters, the initial Error margin (bits) field has a default value of 4.

To change the error margin, enter an integer in the Error margin (bits) field. In
the following figure, the error margin is set to 4 bits.

Command-Line Alternative: Use the generatehdl property ErrorMargin to specify
the number of bits of tolerable error.

 Testing with an HDL Test Bench

6-23

Setting an Initial Value for Test Bench Inputs

By default, the initial value driven on test bench inputs is 'X' (unknown). Alternatively,
you can specify that the initial value driven on test bench inputs is 0, as follows:

1 Select the Test Bench pane in the Generate HDL dialog box.
2 Within the Test Bench pane, select the Configuration subpane.

3 To set an initial test bench input value of 0, select the Initialize test bench inputs
option.

To set an initial test bench input value of 'X', clear the Initialize test bench
inputs option.

Command-Line Alternative: Use the generatehdl property
InitializeTestBenchInputs to set the initial test bench input value.

6 Verification of Generated HDL Filter Code

6-24

Setting Test Bench Stimuli

By default, the coder generates a filter test bench that includes stimuli that correspond to
the given filter type. However, you can adjust the stimuli settings or specify user-defined
stimuli, if desired.

To modify the stimuli included in a test bench, select one or more response types on the
Stimuli subpane of the Test bench tab of the Generate HDL dialog box. The figure
highlights this pane of the dialog box.

If you select User defined response, specify an expression or function that returns
a vector of values to be applied to the filter. The values specified in the vector are
quantized and scaled based on the quantization settings of the filter.

Command-Line Alternative: Use the generatehdl properties TestBenchStimulus
and TestBenchUserStimulus to adjust stimuli settings.

 Testing with an HDL Test Bench

6-25

Setting a Postfix for Reference Signal Names

Reference signal data is represented as arrays in the generated test bench code. The
string specified by Test bench reference postfix is appended to the generated signal
names. The default string is _ref.

You can set the postfix string to a value other than _ref. To change the string:

1 Select the Test Bench pane in the Generate HDL dialog box.
2 Within the Test Bench pane, select the Configuration subpane.
3 Enter a new string in the Test bench reference postfix field, as shown in the

following figure.

Command-Line Alternative: Use the generatehdl property
TestBenchReferencePostfix to change the postfix string.

6 Verification of Generated HDL Filter Code

6-26

More About
• “Integration with Third-Party EDA Tools” on page 6-36

 Cosimulation of HDL Code with HDL Simulators

6-27

Cosimulation of HDL Code with HDL Simulators

In this section...

“Generating HDL Cosimulation Blocks for Use with HDL Simulators” on page 6-27
“Generating a Simulink Model for Cosimulation with an HDL Simulator” on page
6-29

Generating HDL Cosimulation Blocks for Use with HDL Simulators

The coder supports generation of Simulink® HDL Cosimulation blocks. You can use the
generated HDL Cosimulation blocks to cosimulate your filter design using Simulink with
an HDL simulator. To use this feature, you must have an HDL Verifier™ license.

The generated HDL Cosimulation blocks are configured to conform to the port and
data type interface of the filter selected for code generation. By connecting an HDL
Cosimulation block to a Simulink model in place of the filter, you can cosimulate your
design with the desired HDL simulator.

To generate HDL Cosimulation blocks:

1 Select the Test Bench pane in the Generate HDL dialog box.
2 Select the Cosimulation blocks option.

When this option is selected, the coder generates and opens a Simulink model that
contains an HDL Cosimulation block for each supported HDL simulator.

3 If you want to generate HDL Cosimulation blocks only (without generating HDL test
bench code), clear HDL test bench.

The following figure shows both HDL test bench and Cosimulation blocks
selected.

6 Verification of Generated HDL Filter Code

6-28

4 In the Generate HDL dialog box, click Generate to generate HDL and test bench
code.

5 In addition to the usual code files, the coder generates a Simulink model containing
an HDL Cosimulation block for each HDL simulator supported by HDL Verifier.

6 The generated model is untitled and exists in memory only. Be sure to save it to
a destination folder if you want to preserve the model and blocks for use in future
sessions.

 Cosimulation of HDL Code with HDL Simulators

6-29

To configure HDL Cosimulation block parameters, such as timing, latency, and data
types, see “Define HDL Cosimulation Block Interface”.

Command-Line Alternative: Use the generatehdl function with the property
GenerateCosimBlock to generate HDL Cosimulation blocks.

Generating a Simulink Model for Cosimulation with an HDL Simulator

Note: To use this feature, you must have an HDL Verifier license.

The coder generates a Simulink model, that runs a Simulink simulation of your filter
design, and also a cosimulation of your design with an HDL simulator. The model
compares the outputs of the Simulink filter with the results of the HDL simulation.

The generated model includes:

• A behavioral model of the filter design, realized in a Simulink subsystem. The
subsystem implements the filter design using basic blocks such as adders and delays.

• A corresponding HDL Cosimulation block. The coder configures this block to
cosimulate the filter design using Simulink with either of the following:

• Mentor Graphics ModelSim
• Cadence Incisive®

• Test input data, calculated from the test bench stimulus you specify. The coder stores
the test data in the model workspace variable inputdata. A From Workspace block
routes test data to the filter subsystem and HDL Cosimulation blocks.

• A Scope block that lets you observe and compare the test input signal with the
outputs of the Filter block and the HDL cosimulation. The scope also shows the
difference (error) between these two outputs.

Generating the Model

Generation of a cosimulation model requires registered inputs and/or outputs (see
“Limitations” on page 6-35). Before generating the model, make sure that your model
meets this requirement, as follows:

1 Select the Global Settings pane the Generate HDL dialog box.

6 Verification of Generated HDL Filter Code

6-30

2 In the Global Settings pane, click the Ports tab. Port options appear.
3 Select both of the following options:

• Add input register
• Add output register

To generate the model:

1 In the Generate HDL dialog box, configure other code generation and test bench
parameters as required by your design.

2 Select the Test bench pane of the Generate HDL dialog box.
3 Select the Cosimulation model for use with: option. Selecting this option enables

the adjacent drop-down menu, where you can select Mentor Graphics ModelSim
or Cadence Incisive.

 Cosimulation of HDL Code with HDL Simulators

6-31

4 Using the drop-down menu, select which type of HDL Cosimulation block you want
in the generated model. Select either Mentor Graphics ModelSim (the default) or
Cadence Incisive.

In the following figure, the cosimulation model type is Mentor Graphics
ModelSim, and the stimulus signal is White noise response.

6 Verification of Generated HDL Filter Code

6-32

5 In the Generate HDL dialog box, click Generate to generate HDL and test bench
code.

In addition to the usual code files, the coder generates and opens a Simulink model.
The following figure shows the model generated from the coder configuration shown
in the previous step.

 Cosimulation of HDL Code with HDL Simulators

6-33

6 The generated model is untitled and exists in memory only. Be sure to save it to
a destination folder if you want to preserve the model and blocks for use in future
sessions.

To configure HDL Cosimulation block parameters, such as timing, latency, and data
types, see “Define HDL Cosimulation Block Interface”.

Details of the Generated Model

The generated model contains the following blocks:

• Test Stimulus: This From Workspace block routes test data in the model
workspace variable inputdata to the filter subsystem and HDL Cosimulation
blocks.

• Filter: This subsystem realizes a behavioral model of the filter design.
• HDL Cosimulation: This block cosimulates the generated HDL code. The table HDL

Cosimulation Block Settings describes how the coder configures the cosimulation
block parameters.

• Reset Delay: The Tcl commands specified in the HDL Cosimulation block
apply the reset signal. Reset is high at 0 ns and low at 22 ns (before the third rising
clock edge). The Simulink simulation starts feeding the input at 0, 10, 20 ns. The
Reset Delay block adds a delay such that the first sample is available to the RTL
simulation when it is ready after the reset is applied.

6 Verification of Generated HDL Filter Code

6-34

• HDL Latency: This delay represents the difference between the latency of the RTL
simulation and the Simulink behavioral block.

• Error: Computes the difference between the outputs of the Filter block and the HDL
Cosimulation block.

• Abs: Absolute value of the error computation.
• Error margin:: Indicator comparing the absolute value of the error with the test

bench error margin value (see “Setting an Error Margin for Optimized Filter Code” on
page 6-21).

• Scope: Displays the input signal, outputs from the Filter block and the HDL
Cosimulation blocks, and the difference (if one exists) between the two.

• Start HDL Simulator button: Starts your HDL cosimulation software.

HDL Cosimulation Block Settings

Pane Settings

Ports Port names: same as the names in the generated code for the
filter.

Input/Output data types: Inherit

Input sample time: Inherit

Output sample time: Same as Simulink fixed step size.
Clocks Clock port name: same as the name in the generated code for

the filter.

Active clock edge: Rising

Period: same as the Simulink sample time.
Timescales 1 second in Simulink corresponds to 1 tick in the HDL

simulator
Connection Connection Mode: Full Simulation

Connection Method: Shared memory
Tcl (Pre-simulation
commands)

force /Hlp/clk_enable 1;

force /Hlp/reset 1 0 ns, 0 22 ns;

puts ---

puts "Running Simulink Cosimulation block.";

 Cosimulation of HDL Code with HDL Simulators

6-35

Pane Settings
puts [clock format [clock seconds]]

Tcl (Post-simulation
commands)

force /Hlp/reset 1

puts [clock format [clock seconds]]

Generated Model Settings

The generated model has the following nondefault settings:

• Solver: Discrete (no continuous states).
• Solver Type: Fixed-step.
• Stop Time: Ts * StimLen, where Ts is the Simulink sample time and StimLen is

the stimulus length.
• Sample Time Colors: enabled
• Port Data Types: enabled
• Hardware Implementation: ASIC/FPGA

Limitations

• A cosimulation that runs without encountering errors requires that outputs from the
generated HDL code are synchronous with the clock. Before generating code, make
sure that both of the following options are selected:

• Add input register
• Add output register

If you do not select either of these options, the coder terminates model generation
with an error. However, test bench code generation is completed.

• The coder does not support generation of a cosimulation model when the target
language is Verilog and data of type double is generated.

Command-Line Alternative

Use the generatehdl function, passing in one of the following values for the property
GenerateCosimModel.

• generatehdl(filterObj,'GenerateCosimModel','Incisive');

• generatehdl(filterObj,'GenerateCosimModel','ModelSim');

6 Verification of Generated HDL Filter Code

6-36

Integration with Third-Party EDA Tools
In this section...

“Generate a Default Script” on page 6-36
“Customize Scripts for Compilation and Simulation” on page 6-37

Generate a Default Script

The coder generates scripts as part of the code and test bench generation process. Script
files are generated in the target folder.

When HDL code is generated for a filter, Hd, the coder writes the following script files:

• Hd_compile.do: Mentor Graphics ModelSim compilation script. This script contains
commands to compile the generated filter code, but not to simulate it.

When test bench code is generated for a filter Hd, the coder writes the following script
files:

• Hd_tb_compile.do: Mentor Graphics ModelSim compilation script. This script
contains commands to compile the generated filter and test bench code.

• Hd_tb_sim.do: Mentor Graphics ModelSim simulation script. This script contains
commands to run a simulation of the generated filter and test bench code.

You can enable or disable script generation and customize the names and content of
generated script files by:

• Passing properties as 'Name',Value arguments to the generatehdl function. See
Compilation and Simulation Properties.

• Setting the corresponding options in the Generate HDL dialog box. Select the EDA
Tool Scripts tab, and click Compilation script or Simulation script from the
menu in the left column. See “Customize Scripts for Compilation and Simulation” on
page 6-37.

Structure of Generated Script Files

A generated EDA script consists of three sections, which are generated and executed in
the following order:

1 An initialization (Init) phase. The Init phase performs required setup actions,
such as creating a design library or a project file.

 Integration with Third-Party EDA Tools

6-37

2 A command-per-file phase (Cmd). This phase of the script is called iteratively, once
per generated HDL file.

3 A termination phase (Term). This phase is the final execution phase of the script.
One application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase.

The coder generates scripts by passing format strings to the fprintf function. Using the
GUI options (or generatehdl properties) summarized in the following sections, you can
pass in customized format strings to the script generator. Some of these format strings
take arguments, such as the top-level entity or module name.

You can use legal fprintf formatting characters. For example, '\n' inserts a newline
into the script file.

Customize Scripts for Compilation and Simulation

To view and set options in the EDA Tool Scripts dialog box:

1 Open the Generate HDL dialog box.
2 Click the EDA Tool Scripts tab.

The Compilation script options group is selected, as shown.
3 The Generate EDA scripts option controls the generation of script files. By default,

this option is selected, as shown in the preceding image.

If you want to disable script generation, clear this check box.
4 The list on the left of the dialog box lets you select from several categories. Select a

category and set the options as desired. The categories are:

• Compilation script: customize scripts for compilation of generated VHDL or
Verilog code. See “Compilation Script Options” on page 6-38.

• Simulation script: customize scripts for HDL simulators. See “Simulation
Script Options” on page 6-41 .

• Synthesis script: customizing scripts for synthesis tools. See “Automation
Scripts for Third-Party Synthesis Tools” on page 7-2 .

5 The custom strings for each section are passed to fprintf to write each section of
the selected script. You can use format strings supported by the fprintf function.
Some of the strings include implicit arguments.

6 Verification of Generated HDL Filter Code

6-38

Option Implicit arguments

Compile initialization Library name
Compile command for VHDL and
Compile command for Verilog

• Contents of the Simulator flags
option (an empty string, '', by
default)

• File name of the current module
Compile termination No implicit argument
Compile initialization No implicit argument
Simulation command • Library name

• Top-level module or entity name
Simulation termination No implicit argument

Compilation Script Options

The figure shows the Compilation script pane, with the options set to their default
values.

 Integration with Third-Party EDA Tools

6-39

The coder generates a script called Hd_copy_compile.do:

vlib work

vcom Hd_copy.vhd

6 Verification of Generated HDL Filter Code

6-40

If you generate a test bench for your filter, the coder also generates a script called
Hd_copy_tb_compile.do

vlib work

vcom Hd_copy.vhd

vcom Hd_copy_tb.vhd

Setting Simulator Flags for Compilation Scripts

You have the option of inserting simulator flags into your generated compilation scripts.
This option is included in the compilation scripts for both the standalone filter and the
test bench. For example, you can specify a compiler version. To specify the flags:

1 Click Test Bench in the Generate HDL dialog box.
2 Type the flags of interest in the Simulator flags field. In the figure, the dialog box

specifies that the Mentor Graphics ModelSim simulator use the -93 compiler option
for compilation.

 Integration with Third-Party EDA Tools

6-41

Command-Line Alternative: Specify simulator flags with the SimulatorFlags property
of the generatehdl function.

Simulation Script Options

The coder generates a simulation script when you generate a test bench. The figure
shows the Simulation script pane, with the options set to their default values.

6 Verification of Generated HDL Filter Code

6-42

The coder generates a script called Hd_copy_tb_sim.do:

 Integration with Third-Party EDA Tools

6-43

onbreak resume

onerror resume

vsim -novopt work.Hd_copy_tb

add wave sim:/Hd_copy_tb/u_Hd_copy/clk

add wave sim:/Hd_copy_tb/u_Hd_copy/clk_enable

add wave sim:/Hd_copy_tb/u_Hd_copy/reset

add wave sim:/Hd_copy_tb/u_Hd_copy/filter_in

add wave sim:/Hd_copy_tb/u_Hd_copy/filter_out

add wave sim:/Hd_copy_tb/filter_out_ref

run -all

Synthesis Script Options

For information about synthesis script options, see “Automation Scripts for Third-Party
Synthesis Tools” on page 7-2.

7

Synthesis and Workflow Automation

7 Synthesis and Workflow Automation

7-2

Automation Scripts for Third-Party Synthesis Tools

In this section...

“Select a Synthesis Tool” on page 7-2
“Customize Synthesis Script Generation” on page 7-3
“Programmatic Synthesis Automation” on page 7-5

Select a Synthesis Tool

You can enable or disable generation of synthesis scripts, and select the synthesis tool for
which the coder generates scripts. To do so, in the Generate HDL dialog box, select the
EDA Tool Scripts tab. Then select Synthesis script from the menu on the left side,
and select your synthesis tool from the Choose synthesis tool drop-down menu.

Supported Synthesis Tools

Xilinx ISE

Xilinx Vivado

Microsemi Libero

Mentor Graphics Precision

Altera Quartus II

Synopsis Synplify Pro

When you select a synthesis tool, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to correspond with the tool you selected.
• Fills in the Synthesis initialization, Synthesis command, and Synthesis

termination fields with default Tcl script code for the tool.

If you select None, the coder does not generate a synthesis script. The coder clears and
disables the fields in the Synthesis script pane.

You can also select 'Custom', and set the Synthesis initialization, Synthesis
command, and Synthesis termination Tcl code fields to generate a script that
supports your tool.

 Automation Scripts for Third-Party Synthesis Tools

7-3

Customize Synthesis Script Generation

You can customize the script according to your target device, constraints, etc., by
modifying the Tcl code in the Synthesis initialization, Synthesis command, and
Synthesis termination fields. To see these options in the Generate HDL dialog box,
select the EDA Tool Scripts tab, and click Synthesis script from the menu in the left
column.

The coder prints the three sections of the script in the order shown in the dialog box.
The script file is named according to the name of your module or entity combined with
the string in Synthesis file postfix. The custom strings for each section are passed
to fprintf to write each section of the synthesis script. You can use format strings
supported by the fprintf function. In Synthesis initialization, you can use an
implicit argument that is the name of your top-level module or entity. In Synthesis
command, you can use an implicit argument that is the name of the file that contains
your generated HDL code.

The figure shows the Synthesis script pane, with the options set to their default values.

7 Synthesis and Workflow Automation

7-4

The coder generates a script called Hd_copy_synplify.tcl:

project -new Hd_copy.prj

add_file Hd_copy.vhd

set_option -technology VIRTEX4

set_option -part XC4VSX35

set_option -synthesis_onoff_pragma 0

set_option -frequency auto

project -run synthesis

 Automation Scripts for Third-Party Synthesis Tools

7-5

Programmatic Synthesis Automation

You can also specify the synthesis tool and script options as 'Name',Value arguments
to the generatehdl function. For programmatic use with generatehdl, see Synthesis
Automation Properties.

8

Properties — Alphabetical List

8 Properties — Alphabetical List

8-2

Fundamental Properties
Customize filter name and input data type, generation language, and target folder

Description

Specify these properties as 'Name',Value arguments to the generatehdl function, or
set the corresponding options at the top of the Generate HDL dialog box.

Target

Name — File name for generated HDL code
string

This name is also used for the VHDL entity or Verilog module for the filter. The
coder creates the file in the location specified in the TargetDirectory property.
The coder uses the file type extension defined by the VerilogFileExtension or
VHDLFileExtension property.

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

TargetDirectory — Folder location for generated output files
'hdlsrc' (default) | string

Specify the subfolder under the current working folder into which generated files are
written. Alternatively, the string can specify a complete path.

TargetLanguage — HDL language to use for generated filter code
'VHDL' (default) | 'Verilog'

 Fundamental Properties

8-3

Specify which language to use to generate the HDL implementation of the filter.
The coder uses the file type extension defined by the VerilogFileExtension or
VHDLFileExtension property.

Data Types

InputDataType — Specify input data type for System objects
numerictype

When you call generatehdl on a System object, you must specify this property.
Set the property to an object of the numerictype class. Create this object by calling
numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the word length
in bits, and f is the number of fractional bits. See numerictype.

 d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60);

 Hd = design(d,'equiripple','filterstructure','dfsymfir','SystemObject',true);

 generatehdl(Hd,'InputDataType',numerictype(1,16,15))

Language-Specific

VerilogFileExtension — File type extension for generated Verilog files
'.v' (default) | string

The coder uses this extension for generated Verilog files.

VHDLFileExtension — File type extension for generated VHDL files
'.vhd' (default) | string

The coder uses this extension for generated VHDL files.

VHDLArchitectureName — Architecture name for generated VHDL code
'rtl' (default) | string

The coder creates this architecture in generated VHDL files.

VHDLLibraryName — Library name used in initialization section of compilation script
'work' (default) | string

At script generation time, the coder substitutes this string into the HDLCompileInit
string value. By default, the coder generates the library specification'vlib work/n'.

8 Properties — Alphabetical List

8-4

You can use VHDLLibraryName to avoid library name conflicts with your existing VHDL
code. See “Integration with Third-Party EDA Tools” on page 6-36.

See Also
generatehdl

Related Examples
• “Selecting Target Language” on page 2-13
• “Generating HDL Code” on page 2-14

 Filter Configuration Properties

8-5

Filter Configuration Properties
Configure coefficients, complex input ports, and optional ports for specific filter types

Description

The coder provides options to customize your filter. The properties on this page configure
specific types of filters, such as those with programmable coefficients or multiple rates.
Specify these properties as 'Name',Value arguments to the generatehdl function, or
set the corresponding options in the Generate HDL dialog box. These options apply to
specific types of filters and are found in various locations in the Generate HDL dialog
box.

Filter Type Option Location in Dialog Box

FIR or IIR filter with
programmable coefficients

Coefficient source Filter Architecture tab

FIR filter with serial
architecture and
programmable coefficients

Coefficient memory Global Settings tab, when
Coefficient source is set to
Processor Interface

Multirate filters Clock inputs Global Settings tab
Filters with complex input
data

Input complexity Global Settings tab >
Ports tab.

Single-rate Farrow filter Fractional delay port Global Settings tab >
Ports tab

CIC filter Add rate port Filter Architecture tab

For filter serialization and pipeline properties, see Optimization Properties.

Coefficients

CoefficientSource — Source for FIR or IIR filter coefficients
'Internal' (default) | 'ProcessorInterface'

When you set this property to 'Internal', the filter coefficients are obtained from the
filter object and hard-coded in the generated HDL code.

8 Properties — Alphabetical List

8-6

When you set this property to 'ProcessorInterface', the coder generates a memory
interface for the filter coefficients. You can drive this interface with an external
microprocessor. The generated entity or module definition for the filter includes these
ports for the processor interface:

• coeffs_in — Input port for coefficient data
• write_address — The write address for coefficient memory
• write_enable — The write enable signal for coefficient memory
• write_done — Signal to indicate completion of coefficient write operation

The generated test bench also generates input stimulus for this interface. See
TestBenchCoeffStimulus.

When you use a 'ProcessorInterface' with a serial FIR filter, you can use the
CoefficientMemory property to select the type of storage.

See:

• “Fully Parallel FIR Filter with Programmable Coefficients” on page 9-6
• “Programmable Filter Coefficients for FIR Filters” on page 3-30
• “Programmable Filter Coefficients for IIR Filters” on page 3-40

CoefficientMemory — Type of memory for storing programmable coefficients for serial FIR
filters
'Registers' (default) | 'DualPortRAMs' | 'SinglePortRAMs'

This property applies only to FIR filters that have a serial architecture: Fully serial,
Partly serial, or Cascade serial.

The default setting, 'Registers', generates code that stores programmable
coefficients in a register file. When you set this property to 'SinglePortRAMs' or
'DualPortRAMs', the coder generates the respective RAM interface. See “Partly Serial
FIR Filter with Programmable Coefficients” on page 9-6.

This property applies only when you set CoefficientSource to
'ProcessorInterface'. The coder ignores CoefficientMemory unless it is
generating an interface for programmable coefficients.

 Filter Configuration Properties

8-7

Optional Ports

InputComplex — Generate real and imaginary ports for complex input data
'off' (default) | 'on'

Use this option when your filter design requires complex input data. To enable
generation of ports and signal paths for the real and imaginary components of a complex
signal, set InputComplex to 'on'.
Hd = design(fdesign.lowpass,'equiripple','Filterstructure','dffir');

generatehdl(Hd,'InputComplex','on')

The generated VHDL entity includes ports for both complex data components.

ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in_re : IN real; -- double

 filter_in_im : IN real; -- double

 filter_out_re : OUT real; -- double

 filter_out_im : OUT real -- double

);

END Hd;

See “Using Complex Data and Coefficients” on page 5-34.

You can customize the names of the two ports by setting the ComplexRealPostfix and
ComplexImagPostfix properties.

ClockInputs — Generate single or multiple clock inputs for multirate filters
'Single' (default) | 'Multiple'

When you set this property to 'Single', the coder generates a single clock input for a
multirate filter. The module or entity declaration for the filter has a single clock input,
an associated clock enable input, and a clock enable output. The generated code includes
a counter that controls the timing of data transfers to the filter output (for decimation
filters) or input (for interpolation filters). The counter behaves as a secondary clock
whose rate is determined by the decimation or interpolation factor. This option provides
a self-contained clocking solution for FPGA designs. You can customize the name of the
ce_out port using the ClockEnableOutputPort property. Interpolators also pass through
the clock enable input signal to an output port named ce_in. This signal indicates when
the object accepted an input sample. You can use this signal to control the upstream data
flow. You cannot customize this port name.

8 Properties — Alphabetical List

8-8

When you set this property to 'Multiple', the coder generates multiple clock inputs for
a multirate filter. The module or entity declaration for the filter has separate clock inputs
for each rate of a multirate filter. Each clock input has an associated clock enable input.
The coder does not generate a clock enable output. You are responsible for providing
input clock signals that correspond to the desired decimation or interpolation factor.
To see an example, generate test bench code for your multirate filter and examine the
clk_gen processes for each clock. Multiple clock inputs are not supported for:

• Filters with a Partly serial architecture
• Multistage sample rate converters: dsp.FIRRateConverter,

dsp.FarrowRateConverter, or multirate dsp.FilterCascade

This option provides more flexibility than a single clock input but assumes that you
provide higher-level HDL code to drive the input clocks of your filter. The coder does not
generate synchronizers between multiple clock domains. See “Clock Ports for Multirate
Filters” on page 9-14 and “Multirate Filters” on page 3-4.

AddRatePort — Generate rate ports for variable-rate CIC filter
'off' (default) | 'on'

Generate rate and load_rate ports for variable-rate CIC filters. A variable-rate CIC
filter has a programmable rate change factor. When the load_rate signal is asserted,
the rate port loads in a rate factor. You can generate rate ports for a full-precision filter
only.

The generated test bench also includes stimulus for the rate ports. See
TestBenchRateStimulus.

The coder assumes that the filter is designed with the maximum rate expected, and that
the decimation factor (for CIC decimators) or interpolation factor (for CIC interpolators)
is set to this maximum rate-change factor. See “Variable Rate CIC Filters” on page 3-10.

FracDelayPort — Name of fractional delay input port, for single-rate Farrow filters
'filter_fd' (default) | string

The fractional delay input of a single-rate Farrow filter enables the use of time-varying
delays as the filter operates. The fractional delay input is a signal that ranges from 0
through 1.0. This property specifies the name of this port. For example, if you specify the
string 'frac_delay' for filter entity Hd, the coder generates a port with that name.
ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 Filter Configuration Properties

8-9

 reset : IN std_logic;

 filter__in : IN std_logic_vector (15 DOWNTO 0);

 frac_delay : IN std_logic_vector (5 DOWNTO 0);

 filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

See “Single-Rate Farrow Filters” on page 3-23.

The generated test bench also includes stimuli for the rate ports. See
TestBenchFracDelayStimulus.

See Also
generatehdl

8 Properties — Alphabetical List

8-10

Optimization Properties
Optimize speed or area of generated HDL code

Description

These properties configure the HDL architecture of your filter to improve speed or
reduce area. You can customize a serial filter architecture, select alternative multiplier
implementations, and add pipeline registers. Specify these properties as 'Name',Value
arguments to the generatehdl function, or set the corresponding options on the Filter
Architecture tab of the Generate HDL dialog box.

Speed Optimization

AddPipelineRegisters — Optimize clock rate of generated filter code, by adding pipeline
registers
'off' (default) | 'on'

When you set this property to 'on', the coder adds a pipeline register between stages
of computation in a filter. For example, for a sixth-order IIR filter, the coder adds two
pipeline registers, one between the first and second sections and one between the second
and third sections. Although the registers add to the overall filter latency, they provide
significant improvements to the clock rate. For FIR filters, the use of pipeline registers
optimizes filter final summation. The coder forces a tree structure for non-transposed
FIR filters. This setting overrides the setting of the FIRAdderStyle property.

Filter Type Location of Added Pipeline Register

FIR transposed Between coefficient multipliers and adders
FIR, asymmetric FIR, and symmetric FIR Between levels of a tree-based final adder
IIR Between sections

For details, see “Optimizing Final Summation for FIR Filters” on page 4-34.

Note: Pipeline registers in FIR, antisymmetric FIR, and symmetric FIR filters can
produce numeric results that differ from the results produced by the original filter object.
The difference occurs because adding pipeline registers forces the tree mode of final

 Optimization Properties

8-11

summation. In such cases, consider adjusting the generated test bench error margin with
the ErrorMargin property.

You cannot use this property with a fully serial or cascade serial filter implementation.

FIRAdderStyle — Final summation technique used for FIR filters
'linear' (default) | 'tree'

By default, the coder generates linear adder summation logic. Set this property to
'tree' to increase clock speed while using the same area. The tree architecture
computes products in parallel, rather than sequentially, and it creates a final adder that
performs pairwise addition on successive products.

Another option for FIR filter sum implementation is to set the AddPipelineRegisters
property to 'on'. The pipelined implementation produces results similar to tree mode,
with the addition of a stage of pipeline registers after processing each level of the tree.

Consider the following tradeoffs when selecting the final summation technique for your
filter:

• The number of adder operations for linear and tree mode are the same, but the timing
for tree mode can be significantly better due to parallel execution of sums.

• Pipeline mode optimizes the clock rate, but increases the filter latency by the base 2
logarithm of the number of products to be added, rounded up to the nearest integer.

• Linear mode can help maintain numeric accuracy in comparison to the original filter
function. Tree and pipeline modes can produce numeric results that differ from the
results produced by the original filter function.

See “Optimizing Final Summation for FIR Filters” on page 4-34.

You cannot use this property with a fully serial or cascade serial filter implementation.

AddInputRegister — Generate extra register on filter input in HDL code
'on' (default) | 'off'

By default, the coder adds an extra input register to the generated HDL code for the
filter. The code declares a signal named input_register and includes a PROCESS
statement that controls the register. You can set other properties to control the names of
the clock, clock enable, and reset signals, the polarity of the reset signal, and the coding
style that checks for clock events. See Ports and Identifiers Properties.

Input_Register_Process : PROCESS (clk, reset)

8 Properties — Alphabetical List

8-12

BEGIN

 IF reset = '1' THEN

 input_register <= (OTHERS => '0');

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 input_register <= input_typeconvert;

 END IF;

 END IF;

END PROCESS Input_Register_Process ;

When you set this property to 'off', the coder omits the extra input register from
the generated HDL code for the filter. Consider omitting the extra register if you
are incorporating the filter into HDL code that has an existing register to drive the
filter input. Also, omit the extra register if the latency it introduces to the filter is not
tolerable.

AddOutputRegister — Generate extra register for filter output in HDL code
'on' (default) | 'off'

By default, the coder adds an extra output register to the generated HDL code for the
filter. The code declares a signal named output_register and includes a PROCESS
statement that controls the register. You can set other properties to control the names of
the clock, clock enable, and reset signals, the polarity of the reset signal, and the coding
style that checks for clock events. See Ports and Identifiers Properties.

Output_Register_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 output_register <= (OTHERS => '0');

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 output_register <= output_typeconvert;

 END IF;

 END IF;

END PROCESS Output_Register_Process ;

When you set this property to 'off', the coder omits the extra output register from
the generated HDL code for the filter. Consider omitting the extra register if you are
incorporating the filter into HDL code that has an existing output register. Also, omit the
extra register if the latency it introduces to the filter is not tolerable.

MultiplierInputPipeline — Number of pipeline stages at multiplier inputs for FIR filters
0 (default) | nonnegative integer

 Optimization Properties

8-13

For FIR filters, the coder generates this number of pipeline stages on each multiplier
input. The number of multipliers must be an integer greater than or equal to zero.
Multiplier pipelining can help you achieve significantly higher clock rates. The coder
ignores this property if CoeffMultipliers is not set to 'multipliers'.

MultiplierOutputPipeline — Number of pipeline stages at multiplier outputs for FIR
filters
0 (default) | nonnegative integer

For FIR filters, the coder generates this number of pipeline stages on each multiplier
output. The number of multipliers must be an integer greater than or equal to zero.
Multiplier pipelining can help you achieve significantly higher clock rates. The coder
ignores this property if CoeffMultipliers is not set to 'multipliers'.

Area Optimization

OptimizeForHDL — Basic optimization of data types, quantization, and filter structure
'off' (default) | 'on'

By default, the coder generates a fully parallel architecture with numerics that match
the filter object exactly. However, the data types and quantization used in the software
implementation are not necessarily optimal for HDL implementation. When you set
this property to 'on', the coder generates HDL code that reduces area of the hardware
implementation and optimizes data types and quantization effects. As a result of these
optimizations, the coder can:

• Implement an adder-tree structure
• Make tradeoffs concerning data types
• Avoid excessive quantization
• Generate code that produces numeric results that differ from results produced by the

original filter function

You can combine this option with the serial architecture and multiplier optimization
properties.

CoeffMultipliers — Implementation of coefficient multiplications in generated HDL code
'multiplier' (default) | 'csd' | 'factored-csd'

By default, the coder retains multiplier logic in the generated HDL code. To reduce
the area of the filter implementation, you can choose to implement multiplication in

8 Properties — Alphabetical List

8-14

either canonical signed digit (CSD) or factored CSD logic. The CSD technique replaces
multipliers with shift and add logic.

A CSD architecture minimizes the number of adders used for constant multiplication by
representing binary numbers with a minimum count of nonzero digits. This optimization
decreases the area used by the filter while maintaining or increasing clock speed.

Factored CSD replaces multiplier operations with shift and add operations on prime
factors of the coefficients. This option achieves a greater area reduction than CSD, at the
cost of decreasing clock speed.

This option is not supported for multirate or serial architecture filters.

SerialPartition — Number and size of partitions generated for serial filter architectures
[p1 p2 p3...pN]

By default, the coder generates a fully parallel architecture, which is equivalent to a
vector of FL ones, where FL is the length of the filter.

To generate a fully serial architecture, set this property to the length of the filter, FL.

To generate a partly serial architecture, set this property to a vector of integers, [p1 p2
p3...pN]. This vector specifies the length of each of N partitions. The sum of the vector
elements must be equal to the length of the filter, FL.

For a cascade of filters, set this property to {[p1 p2 p3...pNa], [p1 p2
p3...pNb],...}, where each vector in the cell array represents a serial partitioning of
an individual filter within the cascade.

For further savings in area, you can optionally enable the ReuseAccum property to
generate a cascade-serial architecture using the partitions you specified.

For a complete description of parallel and serial architectures and a list of filter types
supported for each architecture, see “Speed vs. Area Tradeoffs” on page 4-2. For an
example, see “Compare Serial Architectures for FIR Filter” on page 9-7

You can specify different SerialPartition values for each stage of a cascaded filter.
See“Serial Partitions for Cascaded Filter” on page 9-8.

ReuseAccum — Enable accumulator reuse, when generating cascade-serial architecture for FIR
filters
'off' (default) | 'on'

 Optimization Properties

8-15

In a cascade-serial architecture, the coder groups filter taps into several serial partitions.
The accumulated output of each partition is cascaded to the accumulator of the previous
partition. The output of the partitions is therefore computed at the accumulator of the
first partition. This technique, called accumulator reuse, saves chip area.

Set this property to 'on' to enable accumulator reuse and generate a cascade-
serial architecture. If the number and size of serial partitions is not specified in the
SerialPartition property, the coder generates an optimal partition.

For a complete description of parallel and serial architectures and a list of filter types
supported for each architecture, see “Speed vs. Area Tradeoffs” on page 4-2. For an
example, see “Compare Serial Architectures for FIR Filter” on page 9-7.

DALUTPartition — Number and size of lookup table (LUT) partitions for distributed
arithmetic (DA) implementation
[p1 p2...pN]

Distributed arithmetic uses a lookup table to store the sums of partial products. The size
of the LUT grows exponentially with the order of the filter. You can divide the LUT into
several partitions, where each LUT partition operates on a different set of filter taps.
This division reduces the total size of the LUT logic.

To divide the LUT into N partitions, set this property to a vector of N integers that specify
the size of each partition. The maximum size for an individual partition is 12. The sum of
the vector elements must be equal to the filter length.

To generate DA code for your filter design without LUT partitioning, specify a scalar,
whose value is equal to the filter length.
fdes = fdesign.lowpass('N,Fc,Ap,Ast',4,0.4,0.05,0.03,'linear');

Hd = design(fdes);

Hd.arithmetic = 'fixed';

generatehdl(Hd,'DALUTPartition',5)

The filter length is calculated differently depending on the filter type.

Filter Type Filter Length (FL) Calculation

Direct form FL = length(find(Hd.numerator~= 0))

Direct form symmetric
Direct form asymmetric

FL = ceil(length(find(Hd.numerator~= 0))/2)

For supported multirate filters, you can specify the LUT partition as:

• A vector defining a partition for LUTs for the polyphase subfilters.

8 Properties — Alphabetical List

8-16

• A matrix of LUT partitions, where each row vector specifies a LUT partition for a
corresponding polyphase subfilter. In this case, the FL is uniform for the subfilters.
This approach provides a fine control for partitioning each subfilter.

LUT Partition Specification Filter Length (FL) Calculation

Vector, whose elements sum to the overall filter length,
FL.

FL = size(polyphase(Hm), 2)

Matrix, where each row specifies the partitions for one
subfilter. The vector elements in each row must sum to the
associated subfilter length, FLi.

p = polyphase(Hm)

FLi = length(find(p(i,:))),
where i is the index to the ith row of
the polyphase matrix of the filter. The
ith row of the matrix p represents the
ith subfilter.

For more information about distributed arithmetic, see “Distributed Arithmetic for FIR
Filters” on page 4-21.

For examples, see “Distributed Arithmetic for Single Rate Filters” on page 9-10 and
“Distributed Arithmetic for Multirate Filters” on page 9-11.

You can specify different DALUTPartition values for each stage of a cascaded filter. See
“Distributed Arithmetic for Cascaded Filters” on page 9-11.

DARadix — Number of bits processed simultaneously in distributed arithmetic (DA)
implementation
2 (default) | positive power of two

This property specifies a degree of parallelism in the DA architecture, which can improve
clock speed at the expense of area. By default, the coder implements a fully serial DA
architecture, that processes one bit at a time (DARadix = 21). The value of this property,
N, must be:

• A nonzero positive integer that is a power of two.
• Such that mod(W,log2(N)) = 0, where W is the input word size of the filter.
• Less than 2W, where W is the input word size of the filter. This maximum specifies a

fully parallel DA architecture.

Values of N between 21 and 2W specify partly serial DA. For more information on
distributed arithmetic, see “Distributed Arithmetic for FIR Filters” on page 4-21.

 Optimization Properties

8-17

When setting a DARadix value for symmetrical (dfilt.dfsymfir) and asymmetrical
(dfilt.dfasymfir) filters, see “Considerations for Symmetric and Asymmetric Filters”
on page 4-24.

You can specify different DARadix values for each stage of a cascaded filter. See
“Distributed Arithmetic for Cascaded Filters” on page 9-11

FoldingFactor — Folding factor of a serial architecture for IIR SOS filter
filter length (default) | integer

Use this property to define a serial architecture for direct-form I or direct-form II SOS
filters. Specify the number of clock cycles, N, taken for the computation of filter output.
The generated HDL code shares multipliers to reduce area at the cost of latency. You can
specify either NumMultipliers or FoldingFactor, but not both. If you do not specify
either NumMultipliers or FoldingFactor, the coder generates HDL code for the filter
with a fully parallel architecture. For a command-line example, see “Serial Architecture
for IIR Filter” on page 9-9. For a GUI example, see “Specifying Serial Architectures
for IIR SOS Filters” on page 4-15.

NumMultipliers — Number of multipliers in a serial architecture for IIR SOS filter
integer greater than 1

Use this property to define a serial architecture for direct-form I or direct-form II SOS
filters. You can specify either NumMultipliers or FoldingFactor, but not both. If you
do not specify either NumMultipliers or FoldingFactor, the coder generates HDL
code for the filter with a fully parallel architecture. For a command-line example, see
“Serial Architecture for IIR Filter” on page 9-9. For a GUI example see “Specifying
Serial Architectures for IIR SOS Filters” on page 4-15.

See Also
generatehdl

8 Properties — Alphabetical List

8-18

Ports and Identifiers Properties
Customize ports, clocks, resets, identifiers, and comments

Description

Specify these properties as 'Name',Value arguments to the generatehdl function, or
set the corresponding options in the Generate HDL dialog box.

Ports, Clocks, and Resets

ClockEnableInputPort — Name of clock enable port in generated HDL code
'clk_enable' (default) | string

For example, generate HDL code for filter object Hd, with a custom name for the clock
enable signal.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'ClockEnableInputPort','filter_clk_en');

The generated entity declaration replaces the default port name with your string.
ENTITY Hd IS

 PORT(clk : IN std_logic;

 filter_clk_en : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector (15 DOWNTO 0);

 filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

The clock enable signal is asserted active high (1). Thus, drive this port high to activate
the registers in the filter.

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

 Ports and Identifiers Properties

8-19

ClockEnableOutputPort — Name of clock enable output port in generated HDL code, for
multirate filters with single input clock
'ce_out' (default) | string

This option is available only when you design a multirate filter and use a single input
clock (the default behavior). For example, generate HDL code for filter object Hd, with a
custom name for the clock enable output port.

Hm = dsp.CICDecimator(7,1,4);

generatehdl(Hm,'InputDataType',numerictype(1,14,13),'ClockEnableOutputPort','filter_clk_out');

The generated entity declaration replaces the default port name with your string.
ENTITY cicdecimfilt IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(13 DOWNTO 0); -- sfix14_En13

 filter_out : OUT std_logic_vector(25 DOWNTO 0); -- sfix26_En13

 filter_clk_out : OUT std_logic

);

END cicdecimfilt;

Interpolators also pass through the clock enable input signal to an output port named
ce_in. This signal indicates when the object accepted an input sample. You can use this
signal to control the upstream data flow. You cannot customize this port name.

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

ClockInputPort — Name of clock input port in generated HDL code
'clk' (default) | string

For example, generate HDL code for filter object Hd, with a custom name for the clock
input port.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'ClockInputPort','filter_clk');

The generated entity declaration replaces the default port name with your string.
ENTITY Hd IS

8 Properties — Alphabetical List

8-20

 PORT(filter_clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector (15 DOWNTO 0);

 filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

InputPort — Name of filter input port in generated HDL code
'filter_in' (default) | string

For example, generate HDL code for filter object Hd, with a custom name for the input
data port.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'InputPort','filter_data_in');

The generated entity declaration replaces the default port name with your string.
ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_data_in : IN std_logic_vector (15 DOWNTO 0);

 filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

 Ports and Identifiers Properties

8-21

InputType — Data type of filter input port in generated HDL code
'std_logic_vector' (default) | 'signed/unsigned' | 'wire'

If your target language is VHDL, choose between 'std_logic_vector' and 'signed/
unsigned'.

If your target language is Verilog, the input data type is 'wire'.

OutputPort — Name of filter output port in generated HDL code
'filter_out' (default) | string

For example, generate HDL code for filter object Hd, with a custom name for the output
data port.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'OutputPort','filter_data_out');

The generated entity declaration replaces the default port name with your string.
ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector (15 DOWNTO 0);

 filter_data_out : OUT std_logic_vector (15 DOWNTO 0);

);

ENDHd;

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

OutputType — Data type of filter output port in generated HDL code
'Same as input data type' (default) | 'std_logic_vector' | 'signed/
unsigned' | 'wire'

If your target language is VHDL, choose between 'Same as input data type',
'std_logic_vector', and 'signed/unsigned'.

If your target language is Verilog, the output data type is 'wire'.

8 Properties — Alphabetical List

8-22

ResetInputPort — Name of filter reset port in generated HDL code
'reset' (default) | string

For example, generate HDL code for filter object Hd, with a custom name for the reset
port.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'ResetInputPort','filter_reset');

The generated entity declaration replaces the default port name with your string.
ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 filter_reset : IN std_logic;

 filter_in : IN std_logic_vector (15 DOWNTO 0);

 filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

To control whether the reset port is active high (drive 1 to reset registers) or active low
(drive 0 to reset registers), set the ResetAssertedLevel property.

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

RemoveResetFrom — Suppress generation of resets from shift registers
'none' (default) | 'ShiftRegister'

By default, the coder includes reset signals for shift registers in the generated HDL
code. Omitting reset signals from shift register code can result in a more efficient
FPGA implementation. To disable resets on shift registers, set this property to
'ShiftRegister'. See “Suppressing Generation of Reset Logic” on page 5-25.

ResetAssertedLevel — Asserted (active) level of reset input signal
'active-high' (default) | 'active-low'

By default, the reset input signal must be driven high (1) to reset registers in the filter
design. For example, this code fragment checks whether reset is active high before
populating the delay_pipeline register.

 Ports and Identifiers Properties

8-23

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

When you set this property to 'active-low', the reset input signal must be driven low
(0) to reset registers in the filter design. For example, this code fragment checks whether
reset is active low before populating the delay_pipeline register.

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '0' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

ResetType — Use asynchronous or synchronous reset style in the generated HDL code for
registers
'async' (default) | 'sync'

By default, the coder uses asynchronous resets. The process block does not check for an
active clock before performing a reset.
delay_pipeline_process : PROCESS (clk, reset)

BEGIN

 IF Reset_Port = '1' THEN

 delay_pipeline (0 To 50) <= (OTHERS =>(OTHERS => '0'));

 ELSIF Clock_Port'event AND Clock_Port = '1' THEN

 IF ClockEnable_Port = '1' THEN

 delay_pipeline(0) <= signed(Fin_Port)

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS delay_pipeline_process;

When you set this property to 'sync', the coder uses a synchronous reset style. In this
case, the process block checks for the rising edge of the clock before performing a reset.
delay_pipeline_process : PROCESS (clk, reset)

BEGIN

 IF rising_edge(Clock_Port) THEN

 IF Reset_Port = '0' THEN

 delay_pipeline(0 To 50) <= (OTHERS =>(OTHERS => '0'));

 ELSIF ClockEnable_Port = '1' THEN

 delay_pipeline(0) <= signed(Fin_Port)

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS delay_pipeline_process;

8 Properties — Alphabetical List

8-24

Identifiers and Comments

BlockGenerateLabel — String to append to block section labels in VHDL GENERATE
statements
'_gen' (default) | string

The coder appends this string to the block section labels of VHDL GENERATE statements.

InstanceGenerateLabel — String to append to instance section labels in VHDL GENERATE
statements
'_gen' (default) | string

The coder appends this string to the instance section labels of VHDL GENERATE
statements.

OutputGenerateLabel — String to append to output assignment block labels in VHDL
GENERATE statements
'outputgen' (default) | string

The coder appends this string to the output assignment block labels of VHDL GENERATE
statements.

ClockProcessPostfix — String to append to HDL clock process names
'_process' (default) | string

The coder uses process blocks to modify the content of the registers in the filter. The label
for each of these blocks is derived from a register name and the postfix _process. For
example, in the following block declaration, the coder derives the process label from the
register name delay_pipeline and the default postfix string _process.

delay_pipeline_process : PROCESS (clk, reset)

BEGIN

CoeffPrefix — Prefix for filter coefficient names
'coeff' (default) | string

Filter Type Coefficient Prefix String

FIR Each coefficient number, starting with 1. For example, the
default for the first coefficient is coeff1.

IIR An underscore (_) and an a or b coefficient name (for
example, _a2, _b1, or _b2) followed by the string
_sectionn, where n is the section number. For example,

 Ports and Identifiers Properties

8-25

Filter Type Coefficient Prefix String
the default for the first numerator coefficient of the third
section is coeff_b1_section3.

For example:
ARCHITECTURE rtl OF Hd IS

 -- Type Definitions

 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>)

 OF signed(15 DOWNTO 0); -- sfix16_En15

 CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

 CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

 CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(-81, 16); -- sfix16_En15

 CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(120, 16); -- sfix16_En15

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

ComplexImagPostfix — String to append to imaginary part of complex signal names
'_im' (default) | string

The coder appends this string to the imaginary part of complex signals in the generated
HDL code. See “Using Complex Data and Coefficients” on page 5-34.

ComplexRealPostfix — String to append to imaginary part of complex signal names
'_re' (default) | string

The coder appends this string to the real part of complex signals in the generated HDL
code. See “Using Complex Data and Coefficients” on page 5-34.

EntityConflictPostfix — String to append to duplicate VHDL entity or Verilog module
names
'block' (default) | string

The coder uses this postfix to resolve duplicate VHDL entity or Verilog module names.
For example, if the coder detects two entities with the name MyFilt, the coder names
the first entity MyFilt and the second instance MyFilt_block.

8 Properties — Alphabetical List

8-26

InstancePrefix — String prefixed to component instance names in generated HDL code
'u_' (default) | string

The coder prefixes component instance names in the generated HDL code with this
string.

PackagePostfix — String to append to filter name to form name of VHDL package file
'_pkg' (default) | string

The coder applies this option only if a package file is required for the design.

ReservedWordPostfix — String to append to identifiers that are VHDL or Verilog reserved
words
'_rsvd' (default) | string

For example, if you name your filter mod, the coder adds the postfix _rsvd to form the
name mod_rsvd.

SplitEntityArch — Separate files for generated VHDL entity and architecture code
'off' (default) | 'on'

By default, the coder writes the generated entity and architecture code to a single file.

When you set this property to 'on', the coder creates the filter VHDL entity and
architecture in two separate files. The coder derives the names of the entity and
architecture files from the filter name. Postfix strings identifying the file as an entity
(_entity) or architecture (_arch) are appended to the base file name. To override
the default and specify your own postfix string, set the SplitArchFilePostfix and
SplitEntityFilePostfix properties.

SplitArchFilePostfix — String to append to filter name to form name of the VHDL
architecture file
'_arch' (default) | string

By default, the coder names the architecture file filtername_arch. This option applies
when you set the SplitEntityArch property to 'on'.

SplitEntityFilePostfix — String to append to filter name to form name of the VHDL
entity file
'_entity' (default) | string

By default, the coder names the entity file filtername_entity. This option applies
when you set the SplitEntityArch property to 'on'.

 Ports and Identifiers Properties

8-27

UserComment — Comment line in header of generated filter and test bench files
string

The coder includes a header comment block at the top of the files it generates. The
header comment block contains information about the specifications of the generating
filter and about the coder options you selected at the time HDL code was generated.

You can add your own comment lines to the header comment block by setting
UserComment to the desired string value. The code generator adds leading comment
characters that correspond to the target language. When you include new lines or line
feeds in the string, the coder emits single-line comments for each new line.

For example, this generatehdl command adds two comment lines to the header in a
generated VHDL file.
generatehdl(Hlp,'UserComment','This is a comment line.\nThis is a second line.')

The resulting header comment block for filter Hlp is:
-- ---

--

-- Module: Hlp

--

-- Generated by MATLAB(R) 7.11 and the Filter Design HDL Coder 2.7.

--

-- Generated on: 2010-08-31 13:32:16

--

-- This is a comment line.

-- This is a second line.

--

-- ---

-- ---

-- HDL Code Generation Options:

--

-- TargetLanguage: VHDL

-- Name: Hlp

-- UserComment: User data, length 47

-- Filter Specifications:

--

-- Sampling Frequency : N/A (normalized frequency)

-- Response : Lowpass

-- Specification : Fp,Fst,Ap,Ast

-- Passband Edge : 0.45

-- Stopband Edge : 0.55

-- Passband Ripple : 1 dB

-- Stopband Atten. : 60 dB

-- ---

-- ---

-- HDL Implementation : Fully parallel

-- Multipliers : 43

-- Folding Factor : 1

-- ---

-- Filter Settings:

8 Properties — Alphabetical List

8-28

--

-- Discrete-Time FIR Filter (real)

-- -------------------------------

-- Filter Structure : Direct-Form FIR

-- Filter Length : 43

-- Stable : Yes

-- Linear Phase : Yes (Type 1)

-- Arithmetic : fixed

-- Numerator : s16,16 -> [-5.000000e-001 5.000000e-001)

-- Input : s16,15 -> [-1 1)

-- Filter Internals : Full Precision

-- Output : s33,31 -> [-2 2) (auto determined)

-- Product : s31,31 -> [-5.000000e-001 5.000000e-001) (auto determined)

-- Accumulator : s33,31 -> [-2 2) (auto determined)

-- Round Mode : No rounding

-- Overflow Mode : No overflow

-- ---

VectorPrefix — String prefix for vector names in generated VHDL code
'vector_of_' (default) | 'string'

The coder prefixes the names of vector signals in the VHDL code with this string. This
property has no effect on generated Verilog code.

See Also
generatehdl

 HDL Constructs Properties

8-29

HDL Constructs Properties
Customize generated HDL style

Description

You can customize the style of the generated VHDL and Verilog code using the properties
on this page. Specify these properties as 'Name',Value arguments to the generatehdl
function, or set the corresponding options on the Global Settings > Advanced tab in
the Generate HDL dialog box.

HDL Coding Style

CastBeforeSum — Enable or disable type casting of input values of addition or subtraction
operations
'on' (default) | 'off'

When you set this property to 'off', the generated code preserves the types of input
values during addition and subtraction operations and then converts the result to the
desired type.

When you set this property to 'on', the generated code type casts input values of
addition and subtraction operations to the desired result type before operating on the
values. This setting produces numeric results that are typical of DSP processors.

The CastBeforeSum property is related to the setting of the FDATool quantization
option Cast signals before sum as follows:

• Some filter object types do not have the Cast signals before sum property. For such
filter objects, CastBeforeSum is effectively off when HDL code is generated; it is not
relevant to the filter. In the Generate HDL dialog box for these filters, Cast before
sum is disabled.

• When the filter object does have the Cast signals before sum property, by default
the coder sets CastBeforeSum following the Cast signals before sum setting in
the filter object. This setting is visible in the Generate HDL dialog box. If you change
the setting of Cast signals before sum in FDATool, the coder updates the setting of
Cast before sum in Generate HDL.

8 Properties — Alphabetical List

8-30

• To override the Cast signals before sum setting passed in from FDATool, set Cast
before sum explicitly in the Generate HDL dialog box, or set the CastBeforeSum
property when you call generatehdl.

See “Specifying Input Type Treatment for Addition and Subtraction Operations” on page
5-32.

InlineConfigurations — Enable or disable generation of inline VHDL configurations
'on' (default) | 'off'

VHDL configurations for an entity can be either inline with the rest of the entity code,
or external in separate VHDL source files. By default, the coder includes configurations
for a filter entity within the generated VHDL code. If you create your own VHDL
configuration files, suppress the generation of inline configurations.

When you set this property to 'on', the coder includes VHDL configurations in files that
instantiate a component.

When you set this property to 'off', the coder does not generate configurations, and
requires user-supplied external configurations. Use this setting if you are creating your
own VHDL configuration files.

LoopUnrolling — Include or unroll and omit FOR and GENERATE loops in generated VHDL
code
'off' (default) | 'on'

When you set this property to 'on', the coder unrolls and omits FOR and GENERATE
loops from the generated VHDL code. Use this option if your EDA tool does not support
GENERATE loops.

When you set this property to 'off', the generated VHDL code can contain FOR and
GENERATE loops.

SafeZeroConcat — Type-safe syntax for concatenated zeros
'on' (default) | 'off'

When you set this property to 'on', the coder uses the '0' & '0' syntax for
concatenated zeros. This syntax is recommended because it is unambiguous.

When you set this property to 'off', the coder uses the "000000..." syntax for
concatenated zeros. This syntax can be easier to read and is more compact, but can lead
to ambiguous types.

 HDL Constructs Properties

8-31

UseAggregatesForConst — Enable or disable aggregate declaration of constants smaller
than 32 bits wide
'off' (default) | 'on'

When you set this property to 'on', the coder represents constants by aggregates,
including constants that are less than 32 bits wide. These VHDL declarations show
constants of less than 32 bits declared as aggregates:
CONSTANT c1: signed(15 DOWNTO 0):= (5 DOWNTO 3 =>'0',1 DOWNTO 0 => '0',OTHERS =>'1');

CONSTANT c2: signed(15 DOWNTO 0):= (7 => '0',5 DOWNTO 4 =>'0',0 => '0',OTHERS =>'1');

When you set this property to 'off', the coder represents constants less than 32 bits
as scalars, and constants greater than or equal to 32 bits as aggregates. These VHDL
declarations show the default scalar declaration for constants of less than 32 bits:

CONSTANT coeff1: signed(15 DOWNTO 0) := to_signed(-60, 16); -- sfix16_En16

CONSTANT coeff2: signed(15 DOWNTO 0) := to_signed(-178, 16); -- sfix16_En16

UseRisingEdge — VHDL coding style used to check for rising clock edges
'off' (default) | 'on'

When you set this property to 'on', the generated code uses the VHDL rising_edge
function when operating on registers.

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

 ELSIF rising_edge(clk) THEN

 IF clk_enable = '1' THEN

 delay_pipeline(0) <= signed(filter_in);

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS Delay_Pipeline_Process ;

When you set this property to 'off', the generated code checks for clock events when
operating on registers.

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

8 Properties — Alphabetical List

8-32

 delay_pipeline(0) <= signed(filter_in);

 delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

 END IF;

 END IF;

END PROCESS Delay_Pipeline_Process ;

The two coding styles have different simulation behavior when the clock transitions from
'X' to '1'.

UseVerilogTimescale — Allow or exclude use of compiler ˋtimescale directives in
generated Verilog code
'on' (default) | 'off'

When you set this property to 'on', the coder uses compiler ˋtimescale directives in
generated Verilog code.

When you set this property to 'off', the coder does not include ˋtimescale directives
in generated Verilog code.

The ˋtimescale directive provides a way of specifying different delay values for
multiple modules in a Verilog file.

See Also
generatehdl

More About
• “HDL Constructs” on page 5-27

 Test Bench Properties

8-33

Test Bench Properties

Enable and customize generated test bench

Description

The coder can optionally generate an HDL test bench that applies generated input
stimuli to the HDL code generated for the filter. The test bench compares the output of
the HDL filter with saved result vectors from MATLAB simulation. You can configure
clocks, resets, input stimuli, and other test bench options using the properties on this
page. Specify these properties as 'Name',Value arguments to the generatehdl
function, or set the corresponding options on the Test Bench tab in the Generate HDL
dialog box.

General

GenerateHDLTestBench — Enable generation of a test bench
'on' (default) | 'off'

When you set this property to 'on', the coder generates a test bench for your HDL filter
code. The test bench applies generated input stimuli to the HDL code generated for the
filter. The test bench compares the output of the HDL filter with saved result vectors
from MATLAB simulation. Configure the clock and reset behavior, input stimulus, and
other test bench features using the properties on this page.

Note: The generatetb function was removed in R2011a. Instead, call generatehdl
and set the GenerateHDLTestbench property to 'on'.

TestBenchName — File name for the generated test bench
filtername_tb (default) | string

This name is also used for the VHDL entity or Verilog module. The coder creates the file
in the location specified in the TargetDirectory property. The coder uses the file type
extension defined by the VerilogFileExtension or VHDLFileExtension property.

8 Properties — Alphabetical List

8-34

Avoiding Reserved Words in Names If you specify a string that is a reserved word in the
selected language, the coder appends the string specified by either:

• The Reserved word postfix option on the Global Settings > General tab of the
Generate HDL dialog box.

• The ReservedWordPostfix property.
See “Resolving HDL Reserved Word Conflicts” on page 5-11.

ErrorMargin — Error margin for test bench comparison with reference signals
4 (default) | positive integer (bits)

Some HDL optimizations can generate test bench code that produces numeric results
that differ from the results produced by the original filter function. Such optimizations
include:

• CastBeforeSum
• OptimizeForHDL
• FIRAdderStyle set to 'Tree'
• AddPipelineRegisters with FIR, asymmetric FIR, and symmetric FIR filters

The error margin specifies an acceptable minimum number of bits by which the numeric
results can differ before the test bench issues a warning.

MultifileTestBench — Divide generated test bench into helper functions, data, and HDL
test bench code files
'off' (default) | 'on'

When you set this property to 'on', the coder writes separate files for test bench
code, helper functions, and test bench data. The file names are derived from the
TestBenchName and TestBenchDataPostFix properties. For example, if the test
bench name is my_fir_filt, the default test bench file names are:

• my_fir_filt_tb — Test bench code
• my_fir_filt_tb_pkg — Helper functions package
• my_fir_filt_tb_data — Test vector data package

The coder uses the file type extension defined by the VerilogFileExtension or
VHDLFileExtension property.

 Test Bench Properties

8-35

When you set this property to 'off', the coder writes a single test bench file containing
HDL test bench code, helper functions, and test bench data.

TestBenchDataPostfix — String appended to test bench data file name, when generating
multifile test bench
'_data' (default) | string

This property applies when you set MultifileTestBench to 'on'. If the name of your
test bench is test_fir_tb, the coder adds the postfix _data to form the test bench data
file name test_fir_tb_data.

TestBenchReferencePostfix — String appended to the names of reference signals in the
generated test bench, when generating multifile test bench
'_ref' (default) | string

This property applies when you set MultifileTestBench to 'on'. The generated test
bench represents reference signal data as arrays. The test bench stores the reference
signal values in the _data file.

CONSTANT filter_out_expected : filter_in_data_log_type :=

 (

 -2.4228738523269194E-03,

 -2.0832449820793104E-03,

 6.7703446401186345E-03,...

Then the test bench accesses one array value at a time for comparison. This postfix
applies to the output signal in the _tb file.

 SIGNAL filter_out_ref : real := 0.0; -- double

...

 filter_out_ref <= filter_out_expected(TO_INTEGER(filter_out_addr));

Clocks and Resets

ClockHighTime — Period during which the test bench drives clock input signals high (1)
5 (default) | positive integer or floating-point (ns)

You can specify an integer or a double-precision floating-point value (with a maximum of
6 significant digits after the decimal point). This option applies only if ForceClock is set
to 'on'.

ClockLowTime — Period during which the test bench drives clock input signals low (0)
5 (default) | positive integer or floating-point (ns)

8 Properties — Alphabetical List

8-36

You can specify an integer or a double-precision floating-point value (with a maximum of
6 significant digits after the decimal point). This option applies only if ForceClock is set
to 'on'.

ForceClock — Enable or disable the test bench forcing the clock input signals
'on' (default) | 'off'

When you set this property to 'on', the test bench forces the clock input signals. When
this option is set, the values of the ClockHighTime and ClockLowTime properties
control the clock waveform.

When you set this property to 'off', you must drive the clock input signals from a user-
defined external source.

ForceClockEnable — Enable or disable the test bench forcing the clock enable input signals
'on' (default) | 'off'

When you set this property to 'on', the test bench forces the clock enable input signals.
The polarity is active high (1). This signal also obeys the setting of the HoldTime
property.

When you set this property to 'off', you must drive the clock enable input signals from
a user-defined external source.

TestBenchClockEnableDelay — Clock cycles between deassertion of reset and assertion
of clock enable
1 (default) | positive integer (clock cycles)

The test bench waits this number of cycles between deasserting the reset signal and
asserting the clock enable signal. The HoldTime property also applies.

In the figure, the test bench deasserts an active-high reset signal after the interval
labeled Hold Time. The test bench then asserts clock enable after a further interval,
labeled Clock enable delay.

 Test Bench Properties

8-37

ForceReset — Enable or disable the test bench forcing the reset input signals
'on' (default) | 'off'

When you set this property to 'on', the test bench forces the reset input signals. You can
also specify a hold time to control the timing of reset by setting the HoldTime property.

When you set this property to 'off', you must drive the reset input signals from a user-
defined external source.

HoldTime — Hold time for input data values and forced reset signals
2 (default) | positive integer or floating-point (ns)

The test bench holds filter data input signals and forced reset input signals for this
number of nanoseconds (ns) past the rising clock edge. You can specify an integer or a
double-precision floating-point value (with a maximum of 6 significant digits after the
decimal point). This option applies to reset input signals only if ForceReset is set to
'on'.

The hold time is the amount of time that reset input signals and input data are held past
the clock rising edge. The following figures show the application of a hold time, thold, for
reset and data input signals when the signals are forced to active high and active low.
The ResetLength property is set to its default of 2 cycles, and the test bench asserts the
reset signal for a total of 2 cycles plus thold.

8 Properties — Alphabetical List

8-38

Clock

Reset Input
Active High

thold

thold

Reset Input
Active Low

Hold Time for Reset Input Signals

Clock

Data Input

thold

Hold Time for Data Input Signals

ResetLength — Number of clock cycles that the test bench asserts the reset signal
2 (default) | positive integer (clock cycles)

The figure shows the default case. The test bench asserts an active-high reset signal for 2
clock cycles.

 Test Bench Properties

8-39

HoldInputDataBetweenSamples — Determine how long the test bench holds input data of
over-clocked filters in a valid state
'off' (default) | 'on'

Serial architectures and distributed arithmetic architectures implement internal clock
rates higher than the input rate. In such filter implementations, the base clock runs N
cycles (N >= 2) for each input sample. This property specifies the number of clock cycles
that the test bench holds each input data value in a valid state.

• When you set this property to 'on', the generated test bench code holds input data
values in a valid state across N clock cycles.

• When you set this property to 'off', the generated test bench code holds data values
in a valid state for only one clock cycle. For the next N-1 cycles, data is in an unknown
state (expressed as 'X'). Forcing the input data to an unknown state verifies that the
generated filter code registers the input data only on the first cycle.

InitializeTestBenchInputs — Initial value driven on test bench inputs, before data
starts
'off' (default) | 'on'

When you set this property to 'on', the test bench drives zeros to the input ports at the
start of the simulation.

When you set this property to 'off', the test bench drives an unknown state (expressed
as 'X') to the input ports at the start of the simulation.

8 Properties — Alphabetical List

8-40

Stimulus

TestBenchStimulus — Input stimuli that generated test bench applies to your filter
'impulse' | 'step' | 'ramp' | 'chirp' | 'noise'

The coder chooses a default set of stimuli depending on your filter type. The default set
is {'impulse','step','ramp','chirp','noise'}. For IIR filters, 'impulse' and
'step' are excluded. You can specify combinations of stimuli as strings in a cell array,
in any order. For example:

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'GenerateHDLTestbench','on',...

 'TestBenchStimulus',{'ramp','impulse','noise'})

You can specify a custom input vector using the TestBenchUserStimulus property.
When TestBenchUserStimulus is a nonempty vector, it takes priority over
TestBenchStimulus.

TestBenchUserStimulus — User-defined function that returns a vector of input data
[] (empty vector) (default) | function call

When this property is set to a non-empty vector, the generated test bench applies this
input stimulus to your filter. Otherwise, the test bench uses the TestBenchStimulus
property to generate input data.

For example, this function call generates a square wave with a sample frequency of 8 bits
per second (Fs/8).

repmat([1 1 1 1 0 0 0 0],1,10)

Specify this stimulus when you call generatehdl.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'GenerateHDLTestbench','on',...

 'TestBenchUserStimulus',repmat([1 1 1 1 0 0 0 0],1,10))

TestBenchCoeffStimulus — Stimulus for testing the coefficient memory interface for FIR
or IIR filters
[] (empty vector) (default) | vector of coefficient values (FIR filters) | cell array of
coefficient and scale values (IIR filters)

This property applies when you set CoefficientSource to 'ProcessorInterface'.

• [] — The test bench loads the coefficients from the filter object and then forces the
input stimuli. This sequence shows the response to the input stimuli and verifies that
the interface writes one set of coefficients into the RAM as expected.

 Test Bench Properties

8-41

• FIR filter — Specify a vector of coefficient values. The filter processes the input
stimuli twice. First, the test bench loads the coefficients from the filter object and
forces the input stimuli to show the response. Then, the filter loads the coefficients
specified by TestBenchCoeffStimulus, and processes the same input stimuli for
a second time. In this case, the internal states of the filter, as set by the first run of
the input stimulus, are retained. The test bench verifies that the interface writes two
different sets of coefficients into the RAM. See “Programmable Filter Coefficients
for FIR Filters” on page 3-30 and “Test Bench for FIR Filter with Programmable
Coefficients” on page 9-13.

• IIR filter — Specify a cell array containing a column vector of scale values, and a
second-order section (SOS) matrix for the filter. The test bench verifies that the
interface writes two different sets of coefficients into the RAM, in the same way as an
FIR filter. See “Programmable Filter Coefficients for IIR Filters” on page 3-40.

TestBenchFracDelayStimulus — Input signal for the fractional delay port of a Farrow
filter
constant obtained from the filter object (default) | 'RandSweep' | 'RampSweep' |
vector or function call returning a vector

This property applies when generating a test bench for a single-rate Farrow filter. By
default, the test bench drives the fractional delay input signal with a constant value
obtained from the filter object. You can specify this input stimulus as a vector, a function
returning a vector, or choose one of two predefined options:

'RandSweep' — A vector of values incrementally increasing over the range from 0 to 1.
This stimulus signal has the same duration as the input signal to the filter, but changes
at a slower rate. Each fractional delay value obtained from the vector is held for 10% of
the total duration of the input signal.

'RampSweep' — A vector of random values from 0 through 1. This stimulus signal
has the same duration as the filter’s input signal, but changes at a slower rate. Each
fractional delay value obtained from the vector is held for 10% of the total duration of the
input signal.

See “Single-Rate Farrow Filters” on page 3-23.

TestBenchRateStimulus — Rate input signal for CIC filter with optional rate port
maximum rate change factor (default) | integer

This property applies for variable-rate CIC filters, when you set AddRatePort to 'on'. If
you do not specify TestBenchRateStimulus, the coder uses the maximum rate-change
factor specified in the filter object.

8 Properties — Alphabetical List

8-42

See “Variable Rate CIC Filters” on page 3-10.

Cosimulation

GenerateCosimBlock — Generate model containing HDL Cosimulation blocks for simulation
of filter in Simulink
'off' (default) | 'on'

When you set this property to 'on', the coder generates and opens a Simulink model
that contains an HDL Cosimulation block for each of Mentor Graphics ModelSim and
Cadence Incisive. This feature requires an HDL Verifier license.

The coder configures the generated HDL Cosimulation blocks to conform to the port and
data type interface of the filter selected for code generation. To cosimulate your design
with the desired HDL simulator, copy the block corresponding to your HDL simulator
into a Simulink model in place of the corresponding filter block.

GenerateCosimModel — Generate model containing realized filter and HDL Cosimulation
block for simulation of filter in Simulink
'none' (default) | 'ModelSim' | 'Incisive'

When you set this property to 'ModelSim' or 'Incisive', the coder generates and
opens a Simulink model that contains an HDL cosimulation block for the selected
simulator, and a behavioral implementation of the filter design. The model applies
generated input stimuli, and compares the output of the EDA simulator with the output
of the behavioral filter subsystem. This feature requires an HDL Verifier license.

You can customize the input stimulus and error margin using the same properties as you
would for the generated HDL test bench.

See “Generating a Simulink Model for Cosimulation with an HDL Simulator” on page
6-29.

See Also
generatehdl

More About
• “Enabling Test Bench Generation” on page 6-9

 Compilation and Simulation Properties

8-43

Compilation and Simulation Properties

Integrate third-party EDA tools into filter design workflow

Description

The coder generates one script to compile your HDL files and one script to simulate the
compiled HDL code. You can modify the commands that the coder prints to the script
by setting the properties described on this page. The coder passes the property values
to fprintf to create the script. You can use format strings supported by the fprintf
function. For example, '\n' inserts a newline into the script file.

Specify these properties as 'Name',Value arguments to the generatehdl function, or
set the corresponding options in the Generate HDL dialog box.

To see these options in the Generate HDL dialog box, select the EDA Tool Scripts tab,
and click Compilation script or Simulation script from the menu in the left column.

Generate Scripts

EDAScriptGeneration — Enable or disable generation of script files
'on' (default) | 'off'

Setting this property to 'off' disables generation of compilation, simulation, synthesis,
and lint scripts.

Compilation

HDLCompileFilePostfix — String appended to file name of generated compilation script
'_compile.do' (default) | string

For example, if the name of the filter or test bench is my_design, the coder adds the
postfix _compile.do to form the name my_design_compile.do.

HDLCompileInit — Initialization section of compilation script
'vlib %s\n' (default) | string

8 Properties — Alphabetical List

8-44

The implicit argument, %s, is the name of your library, VHDLLibraryName. By default,
this string generates the library specification'vlib work/n'. If you compile your filter
design with code from other libraries, use VHDLLibraryName to avoid library name
conflicts.

HDLCompileVerilogCmd — Command written to compilation script for each Verilog file
'vlog %s %s\n' (default) | string

This command adds your generated HDL source file to the list of files to be compiled.
The coder prints this command to the script once for each generated HDL file. The two
arguments are the contents of the SimulatorFlags property (an empty string, '', by
default) and the file name of the current module.

HDLCompileVHDLCmd — Command written to compilation script for each VHDL file
'vcom %s %s\n' (default) | string

This command adds your generated HDL source file to the list of files to be compiled.
The coder prints this command to the script once for each generated HDL file. The two
arguments are the contents of the SimulatorFlags property (an empty string, '', by
default) and the file name of the current entity.

SimulatorFlags — Simulator options written to compilation script
'' (default) | string

Specify options that are specific to your application and the simulator you are using. For
example, if you must use the 1076–1993 VHDL compiler, specify the flag -93. The coder
adds the flags you specify with this option to the compilation command in generated EDA
tool scripts. The compilation command string is specified by the HDLCompileVHDLCmd or
HDLCompileVerilogCmd property.

HDLCompileTerm — Termination section of compilation script
'' (default) | string

The coder prints this string to the end of the compilation script. Add commands to this
property to customize your script.

Simulation

HDLSimFilePostfix — String appended to file name of generated simulation script
'_sim.do' (default) | string

 Compilation and Simulation Properties

8-45

For example, if the name of the filter or test bench is my_design, the coder adds the
postfix _sim.do to form the name my_design_sim.do.

HDLSimInit — Initialization section of simulation script
'onbreak resume\nonerror resume\n' (default) | string

The coder appends this string to the beginning of the simulation script. Add commands to
this property to customize your script.

HDLSimCmd — Command written to simulation script
'vsim -novopt %s.%s\n' (default) | string

The two arguments are your library name and top-level module or entity name. If you
are using VHDL, you can set the library name in the VHDLLibraryName property. If you
are using Verilog, the library name is 'work'. If you compile your filter design with code
from other libraries, use VHDLLibraryName to avoid library name conflicts.

HDLSimViewWaveCmd — Waveform viewing command written to simulation script
'add wave sim:%s\n' (default) | string

The implicit argument is a command that adds the signal paths for the DUT top-level
input signals, output signals, and output reference signals.

HDLSimTerm — Termination section of simulation script
'run -all\n' (default) | string

The coder appends this string to the end of the simulation script. Add commands to this
property to customize your script.

See Also
generatehdl

More About
• “Integration with Third-Party EDA Tools” on page 6-36

8 Properties — Alphabetical List

8-46

Synthesis Automation Properties
Control generation of script for HDL synthesis tool

Description

When you specify an HDL synthesis tool, the coder generates a script to call that
synthesis tool on your generated HDL code. You can modify the commands that the
coder prints to the script using the properties on this page. The coder passes the property
values to fprintf to create the script. You can use format strings supported by the
fprintf function. For example, '\n' inserts a new line into the script file.

Specify these properties as 'Name',Value arguments to the generatehdl function, or
set the corresponding options in the Generate HDL dialog box.

To see these options in the Generate HDL dialog box, select the EDA Tool Scripts tab,
and click Synthesis script from the menu in the left column.

Synthesis Automation

HDLSynthTool — Synthesis tool for which the coder generates a script
'none' (default) | 'ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' |
'Vivado' | 'Custom'

This property enables or disables generation of scripts for third-party synthesis tools.
By default, the coder does not generate a synthesis script. To generate a script for one of
the supported synthesis tools, set HDLSynthTool to one of the tool strings in the table.
The coder uses tool-specific default values for the HDLSynthCmd, HDLSynthInit, and
HDLSynthTerm properties. You can customize each of these properties according to your
target device, constraints, and so on.

HDLSynthTool Value Synthesis Tool

none N/A; script generation disabled
'ISE' Xilinx® ISE
'Vivado' Xilinx Vivado®

 Synthesis Automation Properties

8-47

HDLSynthTool Value Synthesis Tool

'Libero' Microsemi® Libero®

'Precision' Mentor Graphics Precision
'Quartus' Altera® Quartus II
'Synplify' Synopsys® Synplify Pro®

'Custom' Varies; set the HDLSynthCmd, HDLSynthInit, and
HDLSynthTerm properties to generate a script that supports
your tool.

HDLSynthFilePostfix — String appended to file name for generated synthesis script
string

The default value of this property depends on your setting for HDLSynthTool.

For example, if the value of HDLSynthTool is 'Synplify', then
HDLSynthFilePostfix defaults to the string '_synplify.tcl'. Then, if the name of
the device under test is my_design, the coder adds the postfix _synplify.tcl to form
the synthesis script file name my_design_synplify.tcl.

HDLSynthInit — Initialization section of synthesis script
string

The coder prints this command at the beginning of the synthesis script. The default value
of this property depends on your setting for HDLSynthTool. The implicit argument, %s,
is the name of your top-level entity or module.

For example, if you set HDLSynthTool to 'ISE', this property defaults to:

set src_dir [pwd]\nset prj_dir "synprj"\n

file mkdir ../$prj_dir\n

cd ../$prj_dir\n

project new %s.xise\n

project set family Virtex4\n

project set device xc4vsx35\n

project set package ff668\n

project set speed -10\n

HDLSynthCmd — Command written to synthesis script for each HDL file
string

8 Properties — Alphabetical List

8-48

This command adds your generated HDL source file to the list of files to be compiled.
The coder prints this command to the script once for each generated HDL file. The
default value of this property depends on your setting for HDLSynthTool. The implicit
argument, %s, is the name of the HDL file.

For example, if you set HDLSynthTool to 'Quartus', this property defaults to
'set_global_assignment -name %s_FILE "$src_dir/%s"\n'. The first implicit
argument is the TargetLanguage, and the second is the name of the HDL file. The first
argument is used only when your synthesis tool is set to 'Quartus'.

HDLSynthTerm — Termination section of synthesis script
string

The default value of this property depends on your setting for HDLSynthTool. This
section of the script has no implicit argument.

For example, if you set HDLSynthTool to 'Synplify', this property defaults to:

set_option -technology VIRTEX4\n

set_option -part XC4VSX35\n

set_option -synthesis_onoff_pragma 0\n

set_option -frequency auto\n

project -run synthesis\n

See Also
generatehdl

Related Examples
• “Generate Default Altera Quartus II Synthesis Script” on page 9-16
• “Construct Customized Synthesis Script” on page 9-16

More About
• “Automation Scripts for Third-Party Synthesis Tools” on page 7-2

9

Function Reference

9 Function Reference

9-2

fdhdltool
Open Generate HDL dialog box

Syntax

fdhdltool(Hd,nt)

fdhdltool(Hd)

Description

fdhdltool(Hd,nt) opens the Generate HDL dialog box to set options and generate
HDL for a filter System object, Hd. nt is the numeric type of the input data to the filter.

When the Generate HDL dialog box opens, it displays default values for code generation
options that apply to the filter. You can then specify code generation options and
generate HDL code. You can also use this dialog box to generate HDL test bench code
and scripts for third-party EDA tools.

fdhdltool operates on a copy of the filter, not the original object in the workspace.
Changes made to the original filter after you call fdhdltool do not apply to the copy.
The Generate HDL dialog box does not update, either. The naming convention for the
copied filter is filt_copy, where filt is the name of the original filter.

fdhdltool(Hd) opens the Generate HDL dialog box to set options and generate HDL
for a dfilt filter, Hd.

Input Arguments

Hd — Filter object
filter System object, or dfilt object

Filter object for which to generate HDL, for instance, as returned by the design
function. If Hd is a System object, you must specify the input data type, nt.

nt — Specify input data type for System objects
object of numerictype class

 fdhdltool

9-3

This argument is required when the input filter, Hd, is a System object. Create this object
by calling numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

Examples

Open the Generate HDL Dialog Box for a Filter Design

Design a filter System object™.

Fs = 96e3;

filtSpecs = fdesign.lowpass(20e3,22.05e3,1,80,Fs);

FIRLowpass = design(filtSpecs,'equiripple','filterstructure','dfsymfir','SystemObject',true);

Choose a fixed-point data type for the input data.

T = numerictype(1,16,15);

Open the Generate HDL dialog box by passing the filter and the data type as
arguments.

fdhdltool(FIRLowpass,T)

More About
• “Opening the Filter Design HDL Coder GUI Using the fdhdltool Command” on

page 2-11

Introduced in R2007a

9 Function Reference

9-4

generatehdl
Generate HDL code for quantized filter

Syntax

generatehdl(Hd,'InputDataType',nt)

generatehdl(Hd)

generatehdl(___ ,Name,Value)

Description

generatehdl(Hd,'InputDataType',nt) generates HDL code for a filter System
object, Hd, using the default settings. nt is the data type of the input signal, specified as
a numerictype object.

• The function places generated files in a subfolder named hdlsrc, inside your current
working folder.

• The function includes the entity declaration and architecture code in a single source
file.

generatehdl(Hd) generates HDL code for a dfilt filter, Hd, using default settings.

generatehdl(___ ,Name,Value) generates HDL code with additional options
specified by one or more Name,Value pair arguments.

Examples

Generate HDL Code for FIR Equiripple Filter

Call fdesign to pass the specifications for designing a minimum order lowpass filter.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60)

Those specifications determine the following characteristics for this filter:

 generatehdl

9-5

• Normalized passband frequency of 0.2
• Stopband frequency of 0.22
• Passband ripple of 1 dB
• Stopband attenuation of 60 dB

Call the design function to create a FIR equiripple filter, Hd. The function returns a
dsp.FIRFilter object.

Hd = design(d,'equiripple','filterstructure','dfsymfir','Systemobject',true)

Call generatehdl to generate VHDL code for the FIR equiripple filter. When the filter
is a System object, you must specify the input data type.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'Name','MyFilter')

Starting VHDL code generation process for filter: MyFilter

Generating: H:\hdlsrc\MyFilter.vhd

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture

Successful completion of VHDL code generation process for filter: MyFilter

HDL latency is 2 samples

The function names the file MyFilter.vhd and places it in the default target folder,
hdlsrc.

Generate HDL Code and Test Bench for Lowpass Filter

Call fdesign to pass the specifications for designing a minimum order lowpass filter.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60)

Call the design function to create a FIR equiripple filter, Hd. The function returns a
dsp.FIRFilter object.

Hd = design(d,'equiripple','filterstructure','dfsymfir','Systemobject',true)

Call generatehdl to generate VHDL code and VHDL test bench for the FIR equiripple
filter. When the filter is a System object, you must specify the input data type.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'Name','MyFilter','GenerateHDLTestbench','on','TestBenchName','MyFilterTB')

Starting VHDL code generation process for filter: MyFilter

Generating: H:\hdlsrc\MyFilter.vhd

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture

9 Function Reference

9-6

Successful completion of VHDL code generation process for filter: MyFilter

HDL latency is 2 samples

Starting generation of VHDL Test Bench.

Generating input stimulus

Done generating input stimulus; length 4486 samples.

Generating Test bench: H:\hdlsrc\MyFilterTB.vhd

Creating stimulus vectors ...

Done generating VHDL Test Bench.

The function names the files MyFilter.vhd and MyFilterTB.vhd, and places them in
the default target folder, hdlsrc.

Fully Parallel FIR Filter with Programmable Coefficients

Generate VHDL code for a direct-form symmetric FIR filter with fully parallel (default)
architecture and programmable coefficients. The coder generates a processor interface for
the coefficients.

Hd = design(fdesign.lowpass,'equiripple','FilterStructure','dfsymfir')

generatehdl(Hd,'CoefficientSource','ProcessorInterface')

The coder generates this VHDL entity for the filter object Hd.

ENTITY Hd IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN real; -- double

 write_enable : IN std_logic;

 write_done : IN std_logic;

 write_address : IN real; -- double

 coeffs_in : IN real; -- double

 filter_out : OUT real -- double

);

END Hd;

Partly Serial FIR Filter with Programmable Coefficients

Create an asymmetric filter, Hd, and generate VHDL code for the filter. Specify a partly
serial architecture. The coder only reacts to CoefficientMemory when you also set
CoefficientSource to ProcessorInterface. The generated code includes a dual-
port RAM interface for the programmable coefficients.

coeffs = fir1(22,0.45)

Hd = dfilt.dfasymfir(coeffs)

Hd.arithmetic = 'fixed'

generatehdl(Hd,'SerialPartition',[7 4],'CoefficientSource',...

'ProcessorInterface','CoefficientMemory','DualPortRAMs')

 generatehdl

9-7

Compare Serial Architectures for FIR Filter

Create a direct-form FIR filter.

Hd = design(fdesign.lowpass('N,Fc',8,.4))

Hd.arithmetic = 'fixed'

For comparison, generate a default fully parallel architecture.
generatehdl(Hd,'Name','FullyParallel')

Starting VHDL code generation process for filter: FullyParallel

Generating: D:\Work\test\hdlsrc\FullyParallel.vhd

Starting generation of FullyParallel VHDL entity

Starting generation of FullyParallel VHDL architecture

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: FullyParallel

Generate a fully serial architecture by setting the partition size to the total filter length.
Notice that the system clock rate is nine times the input sample rate. Also, the HDL
latency reported is one sample greater than the default parallel implementation.
generatehdl(Hd,'SerialPartition',9,'Name','FullySerial')

Starting VHDL code generation process for filter: FullySerial

Generating: D:\Work\test\hdlsrc\FullySerial.vhd

Starting generation of FullySerial VHDL entity

Starting generation of FullySerial VHDL architecture

Clock rate is 9 times the input sample rate for this architecture.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: FullySerial

Generate a partly serial architecture with three equal partitions. This architecture uses
three multipliers. The clock rate is three times the input rate, and the latency is the
same as the default parallel implementation.
generatehdl(Hd,'SerialPartition',[3 3 3],'Name','PartlySerial')

Starting VHDL code generation process for filter: PartlySerial

Generating: D:\Work\test\hdlsrc\PartlySerial.vhd

Starting generation of PartlySerial VHDL entity

Starting generation of PartlySerial VHDL architecture

Clock rate is 3 times the input sample rate for this architecture.

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: PartlySerial

Generate a cascade-serial architecture by enabling accumulator reuse. Specify the three
partitions in descending order of size. Notice that the clock rate is higher than the rate in
the partly serial (without accumulator reuse) example.
generatehdl(Hd,'SerialPartition',[4 3 2],'ReuseAccum','on','Name','CascadeSerial')

Starting VHDL code generation process for filter: CascadeSerial

Generating: D:\Work\test\hdlsrc\CascadeSerial.vhd

9 Function Reference

9-8

Starting generation of CascadeSerial VHDL entity

Starting generation of CascadeSerial VHDL architecture

Clock rate is 5 times the input sample rate for this architecture.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: CascadeSerial

You can also generate a cascade-serial architecture without specifying the partitions
explicitly. The coder automatically selects partition sizes.
generatehdl(Hd,'ReuseAccum','on', 'Name','CascadeSerial')

Starting VHDL code generation process for filter: CascadeSerial

Generating: D:\Work\test\hdlsrc\CascadeSerial.vhd

Starting generation of CascadeSerial VHDL entity

Starting generation of CascadeSerial VHDL architecture

Clock rate is 5 times the input sample rate for this architecture.

Serial partition # 1 has 4 inputs.

Serial partition # 2 has 3 inputs.

Serial partition # 3 has 2 inputs.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: CascadeSerial

Serial Partitions for Cascaded Filter

Create a two-stage cascade filter and define different serial partitions for each stage.
Specify the partition vectors in a cell array.

Hd = design(fdesign.lowpass('N,Fc',8,.4))

Hd.arithmetic = 'fixed'

Hp = design(fdesign.highpass('N,Fc',8,.4))

Hp.arithmetic = 'fixed'

Hc = cascade(Hd,Hp)

generatehdl(Hc,'SerialPartition',{[5 4],[8 1]})

You can only specify different cascade partitions on the command-line. When you specify
partitions in the Generate HDL dialog box, all cascade stages use the same partitions.

You can use the hdlfilterserialinfo function to display the effective filter length
and partitioning options for each filter stage of a cascade. The function returns a
partition vector corresponding to a desired number of multipliers. Request serial
partition possibilities for the first stage, and choose a number of multipliers.

hdlfilterserialinfo(Hc.stage(1))

 | Total Coefficients | Zeros | Effective |

 --

 | 9 | 0 | 9 |

Effective filter length for SerialPartition value is 9.

 generatehdl

9-9

 Table of 'SerialPartition' values with corresponding values of

 folding factor and number of multipliers for the given filter.

 | Folding Factor | Multipliers | SerialPartition |

 --

 | 1 | 9 |[1 1 1 1 1 1 1 1 1] |

 | 2 | 5 |[2 2 2 2 1] |

 | 3 | 3 |[3 3 3] |

 | 4 | 3 |[4 4 1] |

 | 5 | 2 |[5 4] |

 | 6 | 2 |[6 3] |

 | 7 | 2 |[7 2] |

 | 8 | 2 |[8 1] |

 | 9 | 1 |[9] |

Select a serial partition vector for a target of two multipliers, and pass the vectors to
the generatehdl function. Calling the function this way returns the first possible
partition vector, but there are multiple partition vectors that achieve a two-multiplier
architecture.

sp1 = hdlfilterserialinfo(Hc.stage(1),'Multiplier',2)

sp2 = hdlfilterserialinfo(Hc.stage(2),'Multiplier',3)

generatehdl(Hc,'serialpartition',{sp1,sp2})

Each stage uses a different clock rate based on the number of multipliers. The coder
generates a timing controller to derive these clocks.

Serial Architecture for IIR Filter

Create a direct-form II SOS filter.
Fs = 48e3 % Sampling frequency

Fc = 10.8e3 % Cut-off frequency

N = 5 % Filter Order

f_lp = fdesign.lowpass('n,f3db',N,Fc,Fs)

Hd = design(f_lp,'butter','FilterStructure','df1sos')

Hd.arithmetic = 'fixed'

hdlfilterserialinfo(Hd)

To find possible serial architecture specifications, use the helper function.
hdlfilterserialinfo(Hd)

 Table of folding factors with corresponding number of multipliers for the given filter.

 | Folding Factor | Multipliers |

 | 6 | 3 |

 | 9 | 2 |

 | 18 | 1 |

9 Function Reference

9-10

Call generatehdl and request one of the serial architectures by specifying either the
NumMultipliers or FoldingFactor property, but not both.

generatehdl(Hd,'NumMultipliers',2)

Alternatively, specify the same architecture with the FoldingFactor property.

generatehdl(Hd,'FoldingFactor',9)

For either of these calls to generatehdl, the coder generates a filter that uses a total of
two multipliers, with a latency of nine clock cycles. This architecture uses less area than
the parallel implementation, at the expense of latency.

Distributed Arithmetic for Single Rate Filters

Create a direct-form FIR filter and calculate the filter length, FL.
filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear')

Hd = design(filtdes,'filterstructure','dffir')

Hd.arithmetic = 'fixed'

FL = length(find(Hd.numerator~= 0))

FL =

 31

Specify a set of partitions such that the partition sizes add up to the filter length. This is
just one partition option, you can specify other combinations of sizes.
generatehdl(Hd,'DALUTPartition',[8 8 8 7])

Create a direct-form symmetric FIR filter. The filter length is smaller in the symmetric
case.
filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear')

Hd = design(filtdes,'filterstructure','dfsymfir')

Hd.arithmetic = 'fixed'

FL = ceil(length(find(Hd.numerator~= 0))/2)

FL =

 16

Specify a set of partitions such that the partition sizes add up to the filter length. This is
just one partition option, you can specify other combinations of sizes.
generatehdl(Hd,'DALUTPartition',[8 8])

Tip Use the hdlfilterdainfo function to display the effective filter length, LUT
partitioning options, and possible DARadix values for a filter.

 generatehdl

9-11

Distributed Arithmetic for Multirate Filters

Create a direct-form FIR polyphase decimator, and calculate the filter length, FL.

d = fdesign.decimator(4);

Hm = design(d,'Systemobject',true)

FL = size(polyphase(Hm),2)

FL =

 27

Specify distributed arithmetic LUT partitions that add up to the filter size. When
you specify partitions as a vector for a polyphase filter, each subfilter uses the same
partitions.

generatehdl(Hm,'InputDataType',numerictype(1,16,15),'DALUTPartition',[8 8 8 3])

You can also specify unique partitions for each subfilter. For the same filter, specify
subfilter partitioning as a matrix. The length of the first subfilter is 1, and the other
subfilters have length 26.
d = fdesign.decimator(4);

Hm = design(d,'Systemobject',true)

generatehdl(Hm,'InputDataType',numerictype(1,16,15),'DALUTPartition',[1 0 0 0; 8 8 8 2; 8 8 6 4; 8 8 8 2])

Tip Use the hdlfilterdainfo function to display the effective filter length, LUT
partitioning options, and possible DARadix values for a filter.

Distributed Arithmetic for Cascaded Filters

Create a two-stage cascade filter and define different LUT partitions for each stage.
Specify the partition vectors in a cell array.

Hd = design(fdesign.lowpass('N,Fc',8,.4))

Hd.arithmetic = 'fixed'

Hp = design(fdesign.highpass('N,Fc',8,.4))

Hp.arithmetic = 'fixed'

Hc = cascade(Hd,Hp)

generatehdl(Hc,'DALUTPartition',{[5 4],[3 3 3]})

You can also specify different DARadix values for each filter in a cascade. Specify
DARadix as a cell array.

9 Function Reference

9-12

generatehdl(Hc,'DALUTPartition',{[5 4],[3 3 3]}, 'DARadix',{2^8,2^4})

You can only specify different cascade partitions on the command-line. When you specify
partitions in the Generate HDL dialog box, all cascade stages use the same partitions.

Use the hdlfilterdainfo function to display the effective filter length, LUT
partitioning options, and possible DARadix values for each filter stage of a cascade. The
function returns a LUT partition vector corresponding to a desired number of address
bits. Request LUT partition possibilities for the first stage.

 hdlfilterdainfo(Hc.stage(1))

 | Total Coefficients | Zeros | Effective |

 --

 | 9 | 0 | 9 |

Effective filter length for SerialPartition value is 9.

 Table of 'DARadix' values with corresponding values of

 folding factor and multiple for LUT sets for the given filter.

 | Folding Factor | LUT-Sets Multiple | DARadix |

 --

 | 1 | 16 | 2^16 |

 | 2 | 8 | 2^8 |

 | 4 | 4 | 2^4 |

 | 8 | 2 | 2^2 |

 | 16 | 1 | 2^1 |

 Details of LUTs with corresponding 'DALUTPartition' values.

 | Max Address Width | Size(bits) | LUT Details | DALUTPartition |

 --

 | 9 | 9216 |1x512x18 |[9] |

 | 8 | 4628 |1x256x18, 1x2x10 |[8 1] |

 | 7 | 2352 |1x128x18, 1x4x12 |[7 2] |

 | 6 | 1192 |1x64x17, 1x8x13 |[6 3] |

 | 5 | 800 |1x16x16, 1x32x17 |[5 4] |

 | 4 | 548 |1x16x16, 1x16x17, 1x2x10 |[4 4 1] |

 | 3 | 344 |2x8x13, 1x8x17 |[3 3 3] |

 | 2 | 252 |1x2x10, 1x4x12, 1x4x13, 1x4x16, 1x4x17 |[2 2 2 2 1] |

Notes:

1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18

 implies 1 LUT of 1024 18-bit wide locations.

 generatehdl

9-13

Select address widths and folding factors to obtain LUT partition vectors for each stage.

dp1 = hdlfilterdainfo(Hc.stage(1),'LUTInputs',5,'FoldingFactor',4)

dp2 = hdlfilterdainfo(Hc.stage(2),'LUTInputs',3,'FoldingFactor',4)

generatehdl(Hc,'DALUTPartition',{dp1,dp2})

The first stage uses LUTs with a maximum address size of five bits. The second stage
uses LUTs with a maximum address size of three bits. They run at the same clock rate,
and have different LUT partitions.

Cascaded Filter with Multiple Architectures

You can specify a mix of serial, distributed arithmetic (DA), and parallel architectures
depending upon your hardware constraints. Create a three-stage filter. Each stage is a
different type.

h1 = dfilt.dffir([0.05 -.25 .88 0.9 .88 -.25 0.05])

h1.Arithmetic = 'fixed'

h2 = dfilt.dfasymfir([-0.008 0.06 -0.44 0.44 -0.06 0.008])

h2.Arithmetic = 'fixed'

h3 = dfilt.dfsymfir([-0.008 0.06 0.44 0.44 0.06 -0.008])

h3.Arithmetic = 'fixed'

Hd = cascade(h1,h2,h3)

Specify a DA architecture for the first stage, a serial architecture for the second stage,
and a fully parallel (default) architecture for the third stage. Set the property values
as cell arrays, where each cell applies to a stage. Use the default values —-1 for the
partitions and 2 for DARadix— to disable a property for a particular stage.

generatehdl(Hd,'SerialPartition',{-1,3,-1},...

 'DALUTPartition',{[4 3],-1,-1},...

 'DARadix',{2^8,2,2})

Test Bench for FIR Filter with Programmable Coefficients

Create a direct-form symmetric FIR filter with a fully parallel (default) architecture.
Define the coefficients for the filter object in the vector b. The coder generates test bench
code to test the coefficient interface using a second set of coefficients, c. The coder trims c
to the effective length of the filter.

b = [-0.01 0.1 0.8 0.1 -0.01]

c = [-0.03 0.5 0.7 0.5 -0.03]

c = c(1:ceil(length(c)/2))

hd = dfilt.dfsymfir(b)

9 Function Reference

9-14

generatehdl(hd,'GenerateHDLTestbench','on','CoefficientSource','ProcessorInterface',...

'TestbenchCoeffStimulus',c)

IIR Filter with Programmable Coefficients

Generate VHDL code for an SOS IIR Direct Form II filter with programmable
coefficients.

Fs = 48e3 % Sampling frequency

Fc = 10.8e3 % Cut-off frequency

N = 5 % Filter Order

f_lp = fdesign.lowpass('n,f3db',N,Fc,Fs)

Hd = design(f_lp,'butter','FilterStructure','df2sos')

Hd.arithmetic = 'fixed'

Hd.OptimizeScaleValues = 0

generatehdl(Hd,'CoefficientSource','ProcessorInterface')

The coder generates this VHDL entity for the filter object Hd.

ENTITY Hd IS

PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 write_enable : IN std_logic;

 write_done : IN std_logic;

 write_address : IN std_logic_vector(4 DOWNTO 0); -- ufix5

 coeffs_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16

 filter_out : OUT std_logic_vector(15 DOWNTO 0) -- sfix16_En12

);

END Hd;

Clock Ports for Multirate Filters

Create a polyphase sample rate converter. By default, the coder generates a single input
clock (clk), an input clock enable (clk_enable), and a clock enable output signal named
ce_out. The ce_out signal indicates when an output sample is ready. The ce_in output
signal indicates when an input sample was accepted. You can use this signal to control
the upstream data flow.

frac_cvrter = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)

generatehdl(frac_cvrter,'InputDataType',numerictype(1,16,15))

ENTITY firrc IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 generatehdl

9-15

 filter_out : OUT std_logic_vector(35 DOWNTO 0); -- sfix36_En31

 ce_in : OUT std_logic;

 ce_out : OUT std_logic

);

END firrc;

You can provide custom names for the input clock enable and the output clock enable
signals. You cannot rename the ce_in signal.

frac_cvrter = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)

generatehdl(frac_cvrter,'InputDataType',numerictype(1,16,15),...

 'ClockEnableInputPort','clk_en1','ClockEnableOutputPort','clk_en2')

ENTITY firrc IS

 PORT(clk : IN std_logic;

 clk_en1 : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 filter_out : OUT std_logic_vector(35 DOWNTO 0); -- sfix36_En31

 ce_in : OUT std_logic;

 clk_en2 : OUT std_logic

);

END firrc;

To generate multiple clock input signals for a supported multirate filter, set the
ClockInputs property to 'Multiple'. In this case, the coder does not generate any
output clock enable ports.

decim = dsp.CICDecimator(7,1,4);

generatehdl(decim,'InputDataType',numerictype(1,16,15),'ClockInputs','Multiple')

ENTITY cicdecimfilt IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

 clk1 : IN std_logic;

 clk_enable1 : IN std_logic;

 reset1 : IN std_logic;

 filter_out : OUT std_logic_vector(27 DOWNTO 0) -- sfix28_En15

);

END cicdecimfilt;

9 Function Reference

9-16

Generate Default Altera Quartus II Synthesis Script

Create a filter object. Then call generatehdl, and specify a synthesis tool.

lpf = fdesign.lowpass('fp,fst,ap,ast',0.45,0.55,1,60);

Hd = design(lpf,'equiripple','FilterStructure','dfsymfir','Systemobject',true);

generatehdl(Hd,'InputDataType',numerictype(1,14,13),'HDLSynthTool','Quartus');

The coder generates a script file named firfilt_quartus.tcl, using the default script
properties for the Altera Quartus II synthesis tool.

load_package flow

set top_level firfilt

set src_dir "./hdlsrc"

set prj_dir "q2dir"

file mkdir ../$prj_dir

cd ../$prj_dir

project_new $top_level -revision $top_level -overwrite

set_global_assignment -name FAMILY "Stratix II"

set_global_assignment -name DEVICE EP2S60F484C3

set_global_assignment -name TOP_LEVEL_ENTITY $top_level

set_global_assignment -name VHDL_FILE "../$src_dir/firfilt.vhd"

execute_flow -compile

project_close

Construct Customized Synthesis Script

This example sets the script automation properties to dummy values to illustrate how
the coder constructs the synthesis script from the properties.

lpf = fdesign.lowpass('fp,fst,ap,ast',0.45,0.55,1,60);

Hd = design(lpf,'equiripple','FilterStructure','dfsymfir','Systemobject',true);

generatehdl(Hd,'InputDataType',numerictype(1,14,13),...

'HDLSynthTool','ISE',...

'HDLSynthInit','init line 1 : module name is %s\ninit line 2\n',...

'HDLSynthCmd','command : HDL filename is %s\n',...

'HDLSynthTerm','term line 1\nterm line 2\n');

The coder generates a script file named firfilt_ise.tcl:

init line 1 : module name is firfilt

init line 2

command : HDL filename is firfilt.vhd

term line 1

term line 2

 generatehdl

9-17

Input Arguments

Hd — Filter object
filter System object, or dfilt object

Filter object for which to generate HDL, for instance, the object returned by the design
function. If Hd is a System object, you must specify InputDataType.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'TargetLanguage','Verilog'

Data Types

'InputDataType' — Specify input data type for System objects
object of numerictype class

This argument is required when the input filter, Hd, is a System object. Create this object
by calling numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits. For more information, see
InputDataType.

Language Selection

'TargetLanguage' — Target language
'VHDL' (default) | 'Verilog'

For more information, see TargetLanguage.

File Naming and Location

'Name' — Specify file name for generated HDL code and for filter VHDL entity or Verilog
module
string

9 Function Reference

9-18

For more information, see Name.

'TargetDirectory' — Output folder
'hdlsrc' (default) | string

For more information, see TargetDirectory.

'VerilogFileExtension' — Verilog file extension
'.v' (default) | string

For more information, see VerilogFileExtension.

'VHDLFileExtension' — VHDL file extension
'.vhd' (default) | string

For more information, see VHDLFileExtension.

Resets

'RemoveResetFrom' — Suppress generation of resets from shift registers
'none' (default) | 'ShiftRegister'

For more information, see RemoveResetFrom.

'ResetAssertedLevel' — Asserted (active) level of reset
'active-high' (default) | 'active-low'

For more information, see ResetAssertedLevel.

'ResetLength' — Define length of time (in clock cycles) during which reset is asserted
2 (default) | N

For more information, see ResetLength.

'ResetType' — Reset type
'async' (default) | 'sync'

For more information, see ResetType.

Header Comment and General Naming

'ClockProcessPostfix' — Postfix for clock process names
'_process' (default) | string

 generatehdl

9-19

For more information, see ClockProcessPostfix.

'CoeffPrefix' — Specify prefix (string) for filter coefficient names
'coeff' (default) | string

For more information, see CoeffPrefix.

'ComplexImagPostfix' — Postfix for imaginary part of complex signal
'_im' (default) | string

For more information, see ComplexImagPostfix.

'ComplexRealPostfix' — Postfix for imaginary part of complex signal names
'_re' (default) | string

For more information, see ComplexRealPostfix.

'EntityConflictPostfix' — Postfix for duplicate VHDL entity or Verilog module names
'_block' (default) | string

For more information, see EntityConflictPostfix.

'InstancePrefix' — Prefix for generated component instance names
'u_' (default) | string

For more information, see InstancePrefix.

'PackagePostfix' — Postfix for package file name
'_pkg' (default) | string

For more information, see PackagePostfix.

'ReservedWordPostfix' — Postfix for names conflicting with VHDL or Verilog reserved
words
'_rsvd' (default) | string

For more information, see ReservedWordPostfix.

'SplitArchFilePostfix' — Postfix for VHDL architecture file names
'_arch' (default) | string

For more information, see SplitArchFilePostfix.

9 Function Reference

9-20

'SplitEntityArch' — Split VHDL entity and architecture into separate files
'off' (default) | 'on'

For more information, see SplitEntityArch.

'SplitEntityFilePostfix' — Postfix for VHDL entity file names
'_entity' (default) | string

For more information, see SplitEntityFilePostfix.

'UserComment' — HDL file header comment
string

For more information, see UserComment.

'VectorPrefix' — Prefix for vector names
'vector_of_' (default) | string

For more information, see VectorPrefix.

'BlockGenerateLabel' — Block label for HDL GENERATE statements
_gen (default) | string

For more information, see BlockGenerateLabel.

'InstanceGenerateLabel' — Instance section label postfix for VHDL GENERATE
statements
'_gen' (default) | string

For more information, see InstanceGenerateLabel.

'OutputGenerateLabel' — Output assignment label postfix for VHDL GENERATE
statements
'outputgen' (default) | string

For more information, see OutputGenerateLabel.

'VHDLArchitectureName' — VHDL architecture name
'rtl' (default) | string

For more information, see VHDLArchitectureName.

'VHDLLibraryName' — VHDL library name
'work' (default) | string

 generatehdl

9-21

For more information, see VHDLLibraryName.

Ports

'AddInputRegister' — Extra register indicator to HDL code for filter input
'on' (default) | 'off'

For more information, see AddInputRegister.

'AddOutputRegister' — Generate extra register in HDL code for filter output
'on' (default) | 'off'

For more information, see AddOutputRegister.

'ClockEnableInputPort' — HDL port name for filter clock enable input signals
clk_enable (default) | string

For more information, see ClockEnableInputPort.

'ClockEnableOutputPort' — Name of clock enable output port for multirate filters with a
single clock
ce_out (default) | string

For more information, see ClockEnableOutputPort.

'ClockInputPort' — HDL port name for filter clock input signals
clk (default) | string

For more information, see ClockInputPort.

'InputPort' — Name HDL port for filter input signals
'filter_in' (default) | string

For more information, see InputPort.

'InputType' — Specify HDL data type for filter input port
'std_logic_vector' | 'signed/unsigned' | 'wire' (Verilog)

For more information, see InputType.

'OutputPort' — Name HDL port for filter output signals
'filter_out' (default) | string

9 Function Reference

9-22

For more information, see OutputPort.

'OutputType' — Specify HDL data type for filter output port
'Same as input data type' (VHDL default) | 'std_logic_vector' | 'signed/
unsigned' | 'wire' (Verilog)

For more information, see OutputType.

'ResetInputPort' — Name HDL port for filter reset input signals
'reset' (default) | string

For more information, see ResetInputPort.

Filter Configuration

'CoefficientSource' — Specify source for FIR or IIR filter coefficients
'Internal' (default) | 'ProcessorInterface'

For more information, see CoefficientSource.

'CoefficientMemory' — Specify type of memory for storage of programmable coefficients
for serial FIR filters settings
'Registers' (default) | 'DualPortRAMs' | 'SinglePortRAMs'

For more information, see CoefficientMemory.

'ClockInputs' — Generation of single or multiple clock inputs for multirate filters
'Single' (default) | 'Multiple'

For more information, see ClockInputs.

'FracDelayPort' — Name port for Farrow filter fractional delay input signal
'filter_fd' (default) | string

For more information, see FracDelayPort.

'InputComplex' — Enable generation ports and signal paths that correspond to filters with
complex input data
'off' (default) | 'on'

For more information, see InputComplex.

 generatehdl

9-23

'AddRatePort' — Generate rate ports for variable-rate CIC filter
'off' (default) | 'on'

For more information, see AddRatePort.

Advanced Coding

'CastBeforeSum' — Type casting of input values enable or disable for addition and
subtraction operations
'off' (default) | 'on'

For more information, see CastBeforeSum.

'InlineConfigurations' — Include VHDL configurations
'on' (default) | 'off'

For more information, see InlineConfigurations.

'LoopUnrolling' — Unroll VHDL FOR and GENERATE loops
'off' (default) | 'on'

For more information, see LoopUnrolling.

'SafeZeroConcat' — Type-safe syntax for concatenated zeros
'on' (default) | 'off'

For more information, see SafeZeroConcat.

'UseAggregatesForConst' — Represent constant values with aggregates
'off' (default) | 'on'

For more information, see UseAggregatesForConst.

'UseRisingEdge' — Use VHDL rising_edge function to clock registers
'off' (default) | 'on'

For more information, see UseRisingEdge.

'UseVerilogTimescale' — Generate `timescale compiler directives
'on' (default) | 'off'

For more information, see UseVerilogTimescale.

9 Function Reference

9-24

Optimizations

'AddPipelineRegisters' — Add pipeline register indicator for optimizing filter code clock
rate
'off' (default) | 'on'

For more information, see AddPipelineRegisters.

'CoeffMultipliers' — Specify technique used for processing coefficient multiplier
operations
'multiplier' (default) | 'csd' | 'factored-csd'

For more information, see CoeffMultipliers.

'DALUTPartition' — Specify number and size of LUT partitions for distributed arithmetic
architecture
[p1 p2...pN], a vector of N integers

For more information, see DALUTPartition.

'DARadix' — Specify number of bits processed simultaneously in distributed arithmetic
architecture
2 (default) | N, a nonzero positive integer that is a power of two

For more information, see DARadix.

'FIRAdderStyle' — Specify final summation technique used for FIR filters
'linear' (default) | 'tree'

For more information, see FIRAdderStyle.

'FoldingFactor' — Specify folding factor for IIR SOS filter with serial architecture
integer greater than 1

For more information, see FoldingFactor.

'MultiplierInputPipeline' — Specify number of pipeline stages at multiplier inputs for
FIR filters
0 (default) | integer

For more information, see MultiplierInputPipeline.

 generatehdl

9-25

'MultiplierOutputPipeline' — Specify number of pipeline stages at multiplier outputs
for FIR filters
0 (default) | integer

For more information, see MultiplierOutputPipeline.

'NumMultipliers' — Specify multipliers for IIR SOS filter with serial architecture
integer greater than 1

For more information, see NumMultipliers.

'OptimizeForHDL' — Specify whether generated HDL code is optimized for specific
performance or space requirements
'off' (default) | 'on'

For more information, see OptimizeForHDL.

'ReuseAccum' — Enable accumulator reuse, generating cascade-serial architecture for FIR
filters
'off' (default) | 'on'

For more information, see ReuseAccum.

'SerialPartition' — Specify number and size of partitions generated for serial filter
architectures
[p1 p2 p3...pN], a vector of N integers

For more information, see SerialPartition.

Test Bench

'ClockHighTime' — Period during which test bench drives clock input signals high (1)
5 (default) | ns

For more information, see ClockHighTime.

'ClockLowTime' — Specify period, in nanoseconds, during which test bench drives clock
input signals low (0)
5 (default) | ns

For more information, see ClockLowTime.

9 Function Reference

9-26

'ErrorMargin' — Specify error margin for HDL language-based test benches
4 (bits) (default)

For more information, see ErrorMargin.

'ForceClock' — Specify whether test bench forces clock input signals
'on' (default) | 'off'

For more information, see ForceClock.

'ForceClockEnable' — Specify whether test bench forces input signals for clock enable
'on' (default) | 'off'

For more information, see ForceClockEnable.

'ForceReset' — Specify whether test bench forces reset input signals
'on' (default) | 'off'

For more information, see ForceReset.

'GenerateCoSimBlock' — Generate HDL Cosimulation block
'off' (default) | 'on'

For more information, see GenerateCosimBlock.

'GenerateCoSimModel' — Generate HDL Cosimulation model
'ModelSim' (default) | 'Incisive'

For more information, see GenerateCosimModel.

'GenerateHDLTestbench' — Enable generation of a test bench
'off' (default) | 'on'

For more information, see GenerateHDLTestBench.

'HoldInputDataBetweenSamples' — Specify how long input data values are held in
valid state
'on' (default) | 'off'

For more information, see HoldInputDataBetweenSamples.

'HoldTime' — Specify hold time for filter data input signals and forced reset input signals
5 (ns) (default)

 generatehdl

9-27

For more information, see HoldTime.

'InitializeTestBenchInputs' — Specify initial value driven on test bench inputs before
data is asserted to filter
'off' (default) | 'on'

For more information, see InitializeTestBenchInputs.

'MultifileTestBench' — Divide generated test bench into helper functions, data, and
HDL test bench code files
'off' (default) | 'on'

For more information, see MultifileTestBench.

'TestBenchClockEnableDelay' — Define elapsed time (in clock cycles) between
deassertion of reset and assertion of clock enable
1 (default) | integer number of clock cycles

For more information, see TestBenchClockEnableDelay.

'TestBenchCoeffStimulus' — Specify testing options for coefficient memory interface for
FIR or IIR filters
empty vector (default) | vector

For more information, see TestBenchCoeffStimulus.

'TestBenchDataPostFix' — Specify suffix added to test bench data file name when
generating multifile test bench
'_data' (default) | string

For more information, see TestBenchDataPostfix.

'TestBenchFracDelayStimulus' — Specify input stimulus that test bench applies to
Farrow filter fractional delay port
constant (either 'RandSweep' or 'RampSweep') (default) | vector or function returning
a vector

For more information, see TestBenchFracDelayStimulus.

'TestBenchName' — Name VHDL test bench entity or Verilog module and file that contains
test bench code
string

9 Function Reference

9-28

For more information, see TestBenchName.

'TestBenchRateStimulus' — Specify rate stimulus for CIC filter with rate port
integer

For more information, see TestBenchRateStimulus.

'TestBenchReferencePostFix' — Specify string appended to names of reference signals
generated in test bench code
'_ref' (default) | string

For more information, see TestBenchReferencePostfix.

'TestBenchStimulus' — Specify input stimuli that test bench applies to filter
'impulse' | 'step' | 'ramp' | 'chirp' | 'noise'

For more information, see TestBenchStimulus.

'TestBenchUserStimulus' — Specify user-defined function that returns vector of values
that test bench applies to filter
function call

For more information, see TestBenchUserStimulus.

Script Generation

'EDAScriptGeneration' — Enable or disable script generation for third-party tools
'on' (default) | 'off'

For more information, see EDAScriptGeneration.

'HDLCompileFilePostfix' — String appended to file name of generated compilation
script
'_compile.do' (default) | string

For more information, see HDLCompileFilePostfix.

'HDLCompileInit' — Initialization section of compilation script
'vlib work\n' (default) | string

For more information, see HDLCompileInit.

 generatehdl

9-29

'HDLCompileTerm' — Termination section of compilation script
'' (default) | string

For more information, see HDLCompileTerm.

'HDLCompileVerilogCmd' — Command written to compilation script for each Verilog file
'vlog %s %s\n' (default) | string

For more information, see HDLCompileVerilogCmd.

'HDLCompileVHDLCmd' — Command written to compilation script for each VHDL file
'vcom %s %s\n' (default) | string

For more information, see HDLCompileVHDLCmd.

'HDLSimCmd' — Command written to simulation script, between initialization and termination
sections
'vsim -novopt %s.%s\n' (default) | string

For more information, see HDLSimCmd.

'HDLSimFilePostfix' — String appended to file name for generated simulation scripts
'_sim.do' (default) | string

For more information, see HDLSimFilePostfix.

'HDLSimInit' — Initialization section of simulation script
['onbreak resume\n',...

'onerror resume\n'] (default) | string

For more information, see HDLSimInit.

'HDLSimTerm' — Termination section of simulation script
'run -all\n' (default) | string

For more information, see HDLSimTerm.

'HDLSimViewWaveCmd' — Waveform viewing command written to simulation script
'add wave sim:%s\n' (default) | string

For more information, see HDLSimViewWaveCmd.

9 Function Reference

9-30

'HDLSynthCmd' — Command written to synthesis script, between initialization and
termination sections
string

See HDLSynthCmd.

'HDLSynthFilePostfix' — String appended to file name for generated synthesis script
string

See HDLSynthFilePostfix.

'HDLSynthInit' — Initialization section of synthesis script
string

See HDLSynthInit.

'HDLSynthTerm' — Termination section of synthesis script
string

See HDLSynthTerm.

'HDLSynthTool' — Synthesis tool for which the coder generates a script
'none' (default) | ‘ISE’ | ‘Libero’ | 'Precision' | 'Quartus' | 'Synplify' |
‘Vivado’ | ‘Custom’

See HDLSynthTool.

'SimulatorFlags' — Specify simulator flags applied to generated test bench
string

For more information, see SimulatorFlags.

See Also
generatetbstimulus

Introduced before R2006a

 generatetbstimulus

9-31

generatetbstimulus
Generate and return HDL test bench stimulus

Syntax

data_in = generatetbstimulus(Hd,'InputDataType',nt)

data_in = generatetbstimulus(Hd)

data_in = generatetbstimulus(___ ,Name,Value...)

Description

data_in = generatetbstimulus(Hd,'InputDataType',nt) generates filter
input stimulus for a filter System object Hd. The argument nt is a numerictype object
specifying the input data type.

data_in = generatetbstimulus(Hd) generates filter input stimuli for a dfilt
filter.

data_in = generatetbstimulus(___ ,Name,Value...) generates filter
input stimuli for the filter Hd, based on the specified values of the properties. The
stimulus is generated based on the setting of the properties TestBenchStimulus and
TestBenchUserStimulus. The following choices of stimuli are available:

• 'impulse'

• 'step'

• 'ramp'

• 'chirp'

• 'noise'

Examples

Generate Test Bench Stimulus for FIR Filter

Design a lowpass filter and construct a direct-form FIR filter System object™, Hd.

9 Function Reference

9-32

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');

fir_lp = design(filtdes,'filterstructure','dffir','Systemobject',true);

Generate test bench input data. The call to generatetbstimulus generates ramp
and chirp stimuli and returns the results. Specify the fixed-point input data type as a
numerictype object.

rc_stim = generatetbstimulus(fir_lp,'InputDataType',numerictype(1,12,10),'TestBenchStimulus',{'ramp','chirp'});

Apply the quantized filter to the data and plot the results. The call to the step function
computes the filtered response to the input stimulus. The input data for the step function
must be a column-vector to indicate samples over time. A row-vector would represent
independent data channels.

plot(step(fir_lp,rc_stim'))

 generatetbstimulus

9-33

See Also
generatehdl

Introduced before R2006a

9 Function Reference

9-34

hdlfilterdainfo
Distributed arithmetic information for filter architectures

Syntax
hdlfilterdainfo(Hd,'InputDataType',nt)

hdlfilterdainfo(Hd)

hdlfilterdainfo(___ ,'FoldingFactor',ff)

hdlfilterdainfo(___ ,'DARadix',dr)

hdlfilterdainfo(___ ,'LUTInputs',lutip)

hdlfilterdainfo(___ ,'DALUTPartition',dp)

[dp,dr,lutsize,ff] = hdlfilterdainfo(___)

Description
hdlfilterdainfo is an informational function that helps you define optimal
distributed arithmetic (DA) settings for a filter. For general information on distributed
arithmetic architectures, see “Distributed Arithmetic for FIR Filters” on page 4-21.

hdlfilterdainfo(Hd,'InputDataType',nt) displays an exhaustive table of
DARadix values for the filter System object, Hd, with the corresponding folding factor and
number of LUT sets. This option also displays a table of DALUTPartition values with
corresponding LUT inputs (maximum address width) and details of the LUT sets. The
argument nt is a numerictype object specifying the input data type.

hdlfilterdainfo(Hd) displays an exhaustive table of DARadix and DALUTPartition
values for the dfilt filter, Hd.

hdlfilterdainfo(___ ,'FoldingFactor',ff) displays a table of LUT input values,
sizes, and dimensions, for the folding factor, ff. ff must be a nonzero positive integer, or
inf (to indicate the maximum).

hdlfilterdainfo(___ ,'DARadix',dr) displays a table of LUT input values, sizes,
and dimensions, for the DARadix value dr.

hdlfilterdainfo(___ ,'LUTInputs',lutip) displays a table of folding factor
values for LUT inputs (maximum address width) of lutip. This option also displays LUT
size and dimensions for each value of folding factor.

 hdlfilterdainfo

9-35

hdlfilterdainfo(___ ,'DALUTPartition',dp) displays a table of folding
factor values for DALUTPartition of dp. This option also displays the LUT size and
dimensions for each value of folding factor.

[dp,dr,lutsize,ff] = hdlfilterdainfo(___) returns the DA LUT partition, dp,
DA radix, dr, folding factor, fold, and LUT size, lutsize to a cell array.

Input Arguments

Hd — Filter object
filter System object, or dfilt object

See “Distributed Arithmetic for FIR Filters” on page 4-21 for filter types that support
distributed arithmetic. If Hd is a System object, you must specify the InputDataType.

Parameter Name/Value Pairs

The following parameter name/value inputs are optional. These parameters do not have a
default value; you must supply a valid value.

'InputDataType' — Specify input data type for System objects
object of numerictype class

This argument is required when the input filter, Hd, is a System object. Create this object
by calling numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits. For more information, see
InputDataType.

'FoldingFactor'

Hardware folding factor, an integer greater than 1 (or inf). If the folding factor is
inf, the coder uses the maximum folding factor. Given the folding factor, the coder the
corresponding LUT inputs.

'DARadix'

Desired DA Radix value. Given the DA radix, of multipliers, the coder computes a table
of values of LUT inputs and sizes.

9 Function Reference

9-36

'LUTInputs'

Displays an exhaustive table of values of folding factor corresponding to LUT inputs.

'DALUTPartition'

Displays an exhaustive table of values of folding factor for corresponding LUT partition.

Output Arguments

[dp,dr,lutsize,ff] — Filter architecture details
cell array

Cell array. hdlfilterdainfo returns, in order, the DA LUT partition, dp, DA radix, dr,
folding factor, fold, and LUT size, lutsize.

Examples

Explore DA Options for a Filter

Construct a direct-form FIR filter, and pass it to hdlfilterdainfo. The command
displays the results at the command line.

Hd = design(fdesign.lowpass('N,Fc',8,.4),'Systemobject',true);

hdlfilterdainfo(Hd,'InputDataType',numerictype(1,12,10))

 | Total Coefficients | Zeros | Effective |

 --

 | 9 | 0 | 9 |

Effective filter length for SerialPartition value is 9.

 Table of 'DARadix' values with corresponding values of

 folding factor and multiple for LUT sets for the given filter.

 | Folding Factor | LUT-Sets Multiple | DARadix |

 --

 | 1 | 12 | 2^12 |

 | 2 | 6 | 2^6 |

 | 3 | 4 | 2^4 |

 | 4 | 3 | 2^3 |

 hdlfilterdainfo

9-37

 | 6 | 2 | 2^2 |

 | 12 | 1 | 2^1 |

 Details of LUTs with corresponding 'DALUTPartition' values.

 | Max Address Width | Size(bits) | LUT Details | DALUTPartition |

 | 9 | 7168 |1x512x14 |[9] |

 | 8 | 3596 |1x256x14, 1x2x6 |[8 1] |

 | 7 | 1824 |1x128x14, 1x4x8 |[7 2] |

 | 6 | 904 |1x64x13, 1x8x9 |[6 3] |

 | 5 | 608 |1x16x12, 1x32x13 |[5 4] |

 | 4 | 412 |1x16x12, 1x16x13, 1x2x6 |[4 4 1] |

 | 3 | 248 |1x8x13, 2x8x9 |[3 3 3] |

 | 2 | 180 |1x2x6, 1x4x12, 1x4x13, 1x4x8, 1x4x9 |[2 2 2 2 1] |

Notes:

1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18

 implies 1 LUT of 1024 18-bit wide locations.

More About
• “Distributed Arithmetic for FIR Filters” on page 4-21

Introduced in R2011a

9 Function Reference

9-38

hdlfilterserialinfo
Serial partition information for filter architectures

Syntax
hdlfilterserialinfo(Hd,'InputDataType',nt)

hdlfilterserialinfo(Hd)

hdlfilterserialinfo(___ ,'FoldingFactor',ff)

hdlfilterserialinfo(___ ,'Multipliers',nmults)

hdlfilterserialinfo(___ ,'SerialPartition',[p1 p2 ... pN])

[sp,fold,nm] = hdlfilterserialinfo(___)

Description
hdlfilterserialinfo is an informational function that helps you define an optimal
serial partition for a filter. When you specify a serial architecture for a filter, you can
define the serial partitioning in the following ways:

• Directly specify serial partitions as a vector of integers having N elements, where N is
the number of serial partitions. Each element of the vector specifies the length of the
corresponding partition.

• Specify the desired hardware folding factor, ff, an integer greater than 1. Given the
folding factor, the coder computes the serial partition and the number of multipliers.

• Specify the desired number of multipliers, nmults, an integer greater than 1. Given
the number of multipliers, the coder computes the serial partition and the folding
factor.

hdlfilterserialinfo(Hd,'InputDataType',nt) displays a table of serial partition
values for the filter System object, Hd. The filter architecture is quantized based on the
input data type, nt, specified as a numerictype(s,w,f) object. You can use a System
object, along with the InputDataType Name,Value pair, with any other syntax.

hdlfilterserialinfo(Hd) displays a table of serial partition values, with
corresponding values of folding factor and number of multipliers, for the dfilt, Hd.

hdlfilterserialinfo(___ ,'FoldingFactor',ff) displays only those serial
partition values corresponding to the folding factor, ff.

 hdlfilterserialinfo

9-39

hdlfilterserialinfo(___ ,'Multipliers',nmults) displays only those serial
partition values corresponding to the number of multipliers, nmults.

hdlfilterserialinfo(___ ,'SerialPartition',[p1 p2 ... pN]) displays
the folding factor and number of multipliers corresponding to the serial partition vector
[p1p2...pN].

[sp,fold,nm] = hdlfilterserialinfo(___) returns a cell array of serial
partition values with their corresponding folding factors and numbers of multipliers.
To narrow the set of returned serial partition values, you can also specify any of the
properties in the previous syntaxes.

Input Arguments

Hd — Filter object
filter System object, or dfilt object

See “Speed vs. Area Tradeoffs” on page 4-2 for filter types that support serial
architectures. If Hd is a System object, you must specify the InputDataType.

Parameter Name/Value Pairs

The following parameter name/value inputs are optional. These parameters do not have a
default value; you must supply a valid value.

'InputDataType' — Specify input data type for System objects
object of numerictype class

This argument is required when the input filter, Hd, is a System object. Create this object
by calling numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits. For more information, see
InputDataType.

'FoldingFactor' — Hardware folding factor
integer greater than 1, or inf

If the folding factor is inf, the coder uses the maximum folding factor. Given the folding
factor, the coder computes the serial partition and the number of multipliers.

'Multipliers' — Desired number of multipliers
integer greater than 1, or inf

9 Function Reference

9-40

If the number of multipliers is inf, the coder uses the maximum number of multipliers.
Given the number of multipliers, the coder computes the serial partition and the folding
factor.

'SerialPartition' — Lengths of hardware partitions
vector of N integers

Each element of the vector specifies the length of the corresponding partition. The vector
length, N, is the number of serial partitions.

Output Arguments

[sp,fold,nm] — Filter architecture details
cell array

hdlfilterserialinfo returns, in order, the serial partition, sp, folding factor, fold,
and number of multipliers, nm.

Examples

Explore Serial Partition Options

To display valid serial partitions, pass the filter, with no other arguments, to
hdlfilterserialinfo.

Hd = design(fdesign.lowpass('N,Fc',8,.4),'Systemobject',true);

hdlfilterserialinfo(Hd,'InputDataType',numerictype(1,12,10))

 | Total Coefficients | Zeros | Effective |

 --

 | 9 | 0 | 9 |

Effective filter length for SerialPartition value is 9.

 Table of 'SerialPartition' values with corresponding values of

 folding factor and number of multipliers for the given filter.

 | Folding Factor | Multipliers | SerialPartition |

 --

 | 1 | 9 |[1 1 1 1 1 1 1 1 1] |

 hdlfilterserialinfo

9-41

 | 2 | 5 |[2 2 2 2 1] |

 | 3 | 3 |[3 3 3] |

 | 4 | 3 |[4 4 1] |

 | 5 | 2 |[5 4] |

 | 6 | 2 |[6 3] |

 | 7 | 2 |[7 2] |

 | 8 | 2 |[8 1] |

 | 9 | 1 |[9] |

Explore Serial Partitions for a Fixed Number of Multipliers

Design a filter and pass it to hdlfilterserialinfo. Request serial partition
parameters for a design that uses three multipliers.

Hd = design(fdesign.lowpass('N,Fc',8,.4),'Systemobject',true);

hdlfilterserialinfo(Hd,'InputDataType',numerictype(1,12,10),'Multipliers',3)

Serial Partition: [3 3 3], Folding Factor: 3, Multipliers: 3

Explore Serial Partitions for a Fixed Folding Factor

Design a filter and pass it to hdlfilterserialinfo. Request serial partition
parameters for a design that uses a folding factor of four.

Hd = design(fdesign.lowpass('N,Fc',8,.4),'Systemobject',true);

hdlfilterserialinfo(Hd,'InputDataType',numerictype(1,12,10),'FoldingFactor',4)

Serial Partition: [4 4 1], Folding Factor: 4, Multipliers: 3

Return Serial Partition Options to a Cell Array

Pass the filter and data type, with no additional arguments, to hdlfilterserialinfo.
You can return the results to a cell array.

Hd = design(fdesign.lowpass('N,Fc',8,.4),'Systemobject',true);

[sp,ff,nm] = hdlfilterserialinfo(Hd,'InputDataType',numerictype(1,12,10))

sp =

 '[1 1 1 1 1 1 1 1 1]'

 '[2 2 2 2 1]'

 '[3 3 3]'

 '[4 4 1]'

 '[5 4]'

9 Function Reference

9-42

 '[6 3]'

 '[7 2]'

 '[8 1]'

 '[9]'

ff =

 '1'

 '2'

 '3'

 '4'

 '5'

 '6'

 '7'

 '8'

 '9'

nm =

 '1'

 '2'

 '3'

 '5'

 '9'

You can also use this syntax while specifying a number of multipliers or folding factor.

[sp_ff4,ff4,nm_ff4] = hdlfilterserialinfo(Hd,'InputDataType',numerictype(1,12,10),...

 'FoldingFactor',4)

sp_ff4 =

 4 4 1

ff4 =

 4

nm_ff4 =

 hdlfilterserialinfo

9-43

 3

More About
• “Speed vs. Area Tradeoffs” on page 4-2

Introduced in R2010b

